Michael Fossel Michael is President of Telocyte

December 1, 2017

Big Pharma: Still Looking for the Horse

About a century ago, in a small American town, the first automobile chugged to a stop in front of the general store, where a local man stared at the apparition in disbelief, then asked “where’s your horse?” A long explanation followed, involving internal combustion, pistons, gasoline, and driveshafts. The local listened politely but with growing frustration, then broke in on the explanation. “Look”, he said, “I get all that, but what I still want to know is ‘where is your horse?’”

About three hours ago, in a teleconference with a major global pharmaceutical company, I was invited to talk about telomerase therapy and why it might work for Alzheimer’s, since it doesn’t actually lower beta amyloid levels. I explained about senescent gene expression, dynamic protein pools whose recycling rates slow significantly, causing a secondary increase in amyloid plaques, tau tangles, and mitochondrial dysfunction. The pharmaceutical executive listened (not so politely) with growing frustration, then broke in on the explanation. “Look”, she said, “I get all that, but what I still want to know is how does telomerase lower beta amyloid levels?”

In short, she wanted to know where I had hidden the horse.

The global pharmaceutical company that invited me to talk with them had, earlier this year, given up on its experimental Alzheimer’s drug that aimed at lowering beta amyloid levels, since it had no effect on the clinical course. None. They have so far wasted several years and several hundred million dollars chasing after amyloid levels, and now (as judged by our conversation) they still intent on wasting more time and money chasing amyloid levels. We offered them a chance to ignore amyloid levels and simply correct the underlying problem. While not changing the amyloid levels, we can clean up the beta amyloid plaques, as well as the tau tangles, the mitochondrial dysfunction, and all the other biomarkers of Alzheimer’s. More importantly, we can almost certainly improve the clinical course and largely reverse the cognitive decline. In short, we have a new car in town.

As with so many other big pharmaceutical companies, this company is so focused on biomarkers that they can’t focus on what those markers imply in terms of the dynamic pathology and the altered protein turnover that underlies age-related disease, including Alzheimer’s disease. And we wonder why all the drug trials continue to fail. The executive who asked about amyloid levels is intelligent and experienced, but wedded to an outmoded model that has thus far shown no financial reward and – worse yet – no clinical validity. It doesn’t work. Yet this executive met with me as part of a group seeking innovative approaches to treating Alzheimer’s disease.

Their vision is that they are looking for innovation.

The reality is that they are still looking for the horse.

October 10, 2017

Should everyone respond the same to telomerase?

A physician friend asked if a patient’s APOE status (which alleles they carry, for example APOE4, APOE3, or APOE2) would effect how well they should respond to telomerase therapy. Ideally, it may not make much difference, except that the genes you carry (including the APOE genes and the alleles for each type of APOE gene, as well as other genes linked to Alzheimer’s risk) determine how your risk goes up with age. For example, those with APOE4 alleles (especially if both are APOE4) have a modestly higher risk of Alzheimer’s disease (and at a lower age) than those with APOE2 alleles (expecially if both are APOE2).

Since telomerase doesn’t change your genes or the alleles, then while it should reset your risk of dementia to that of a younger person, your risk (partly determined by your genes) would then operate “all over again”, just as it did before. Think of it this way. If it took you 40 years to get dementia and we reset your risk using telomerase, then it might take you 40 years to get dementia again. If it took you 60 years to get dementia and we reset your risk using telomerase, then it might take you 60 years to get dementia again. It wouldn’t remove your risk of dementia, but it should reset your risk to what it was when you were younger. While the exact outcomes are still unknown, it is clear is that telomerase shouldn’t get rid of your risk, but it might be expected to reset that risk to what it was several years (or decades) before you were treated with telomerase. Your cells might act younger, but your genes are still your genes, and your risk is still (again) your risk.

The same could be said for the rate of response to telomerase therapy. How well (and how quickly) a patient should respond to telomerasse therapy should depend on how much damage has already occurred, which (again) is partially determined by your genes (including APOE genes and dozens of others). Compared to a patient with APOE2 alleles (the “good” APOE alleles), we might expect the clinical response for a patient with APOE4 alleles (the “bad” APOE alleles) to have a slightly slower respone to telomerase, a peak clinical effect that was about the same, and the time-to-retreatment to be just a big shorter. The reality should depend on how fast amyloid plaques accumulates (varying from person to person) and how fast we might be able to remove the plaque (again, probably varying from person to person). The vector (slope of the line from normal to onset of dementia) should be slightly steeper for those with two APOE4 alleles than for two APOE3 alleles, which would be slightly steeper than for two APOE2 alleles. Those with unmatched alleles (APOE4/APOE2) should vary depending upon which two alleles they carried.

To give a visual idea of what we might expect, I’ve added an image that shows the theoretical response of three different patients (a, b, and c), each of whom might respond equally well to telomerase therapy, but might then need a second treatment at different times, depending on their genes (APOE and other genes) and their environment (for example, head injuries, infections, diet, etc.). Patient c might need retreatment in a few years, while patient a might not need retreatment for twice as long.

 

September 20, 2017

Genes and Aging

Several of you have asked why I don’t update this blog more often. My priority is to take effective interventions for age-related diseases to FDA phase 1 human trials, rather than blogging about the process. Each week, Outlook reminds me to update the blog, but there are many tasks that need doing if we are going to get to human trials, which remains our primary target.

In working on age-related disease, however, I am reminded that we can do very little unless we understand aging. Most of us assume we already understand what we mean by aging, but our assumptions prevent us from a more fundamental and valid understanding of the aging process. In short, our unexamined assumptions get in the way of effective solutions. To give an analogy, if we start with the assumption that the Earth is the center of the solar system, then no matter how carefully we calculate the orbits of the planets, we will fail. If we start with the assumption that the plague results from evil spirits rather than Yersinia pestis, then no matter how many exorcisms we invoke, we will fail. We don’t fail because of any lack of effort, we fail because of misdirected effort.

Our assumptions define the limits of our abilities.

When we look at aging, too often we take only a narrow view. Humans age, as do all the mammals and birds (livestock and pets come to mind) that have played common roles in human culture and human history. When most people think of aging, they seldom consider trees, hydra, yeast, bacteria, or individual cells (whatever the species). Worse, even when we do look at these, we never question our quotidian assumptions. We carry our complacent assumptions along with us, a ponderous baggage, dragging us down, restricting our ability to move ahead toward a more sophisticated (and accurate) understanding. If we looked carefully, we would see that not all cells age and not all organisms age. Moreover, of those that age, not all organisms age at the same rate and, within an organism, not all cells age at the same rate. In short, neither the rate of aging, nor aging itself is universal. As examples, dogs age faster than humans and, among humans, progeric children age faster than normal humans. The same is true when we consider cells: somatic cells age faster than stem cells, while germ cells (sperm and ova) don’t age at all. So much for aging being universal.

The key question isn’t “why do all things age?”, but rather “why does aging occur in some cases and not in others, and at widely different rates when it occurs at all?” The answer certainly isn’t hormones, heartbeats, entropy, mitochondria, or free radicals, for none of these can explain the enormous disparity in what ages and what doesn’t, nor why cells age at different rates. Nor is aging genetic in any simplistic sense. While genes play a prominent role in how we age, there are no “aging genes”. Aging is not a “genetic disease”, but rather a matter of epigenetics – it’s not which genes you have, but how those genes are expressed and how their expression changes over time, particularly over the life of the organism or over multiple cell divisions in the life of a cell. In a sense, you age not because of entropy, but because your cells downregulate the ability to maintain themselves in the face of that entropy. Cell senescence effects a broad change in gene expression that results in a gradual failure to deal with DNA repair, mitochondrial repair, free radical damage, and molecular turnover in general. Aging isn’t a matter of damage, it’s a matter of no longer repairing the damage.

All of this wouldn’t matter – it’s mere words and theory – were it not for our ability to intervene in age-related disease. Once we understand how aging works, once we look carefully at our assumptions and reconsider them, our more accurate and fundamental understanding allows suggests how we might cure age-related disease, to finally treat the diseases we have so long thought beyond our ability. It is our ability to see with fresh eyes, to look at all organisms and all cells without preconceptions, that permits us to finally do something about Alzheimer’s and other age-related disease.

Only an open mind will allow us to save lives.

 

April 12, 2017

We Already Know It Works

Oddly enough, many investors don’t realize how far we are down the road to a cure.

In fact, most people don’t understand why such studies are done and – more to the point – why Telocyte is doing one. Just to clarify: we’re not doing an animal study to prove efficacy. We already know it’s effective in animals.

The reason we do an animal study is because the FDA, quite reasonably, requires an animal safety study in order to assess risks and side effects. Most people assume that animal studies are done to show that a potential therapy works in animals, so that it might work in humans as well. In fact, however, once you have shown that a therapy works in animals, as we have already, then before you can go on to human trials, you first need to do an animal safety study.

Animal studies are done to assess safety, not to assess efficacy.

For an initial human trial, the main question for the FDA isn’t efficacy, but safety. Sensibly, the FDA requires that the safety data be done carefully and credibly, to meet their careful standards. We know telomerase gene therapy works, but we still need to prove (to the FDA’s satisfaction) that telomerase gene therapy is safe enough to justify giving our therapy to human patients. So the question isn’t “Do we have a potential intervention for Alzheimer’s?” (which we do), but rather “Do we know what the risks are once we give it?” We’re fairly certain that we know those risk, but we need to document them rigorously.

In getting our therapy to human trials, you might say that there are three stages:

  1. Animal studies that show efficacy (already done by our collaborators).
  2. Animal studies that show safety (an FDA requirement).
  3. Human trials before release for general use (an FDA requirement).

Telocyte already has good data on the first stage: we know that telomerase is remarkably effective in reversing the behavioral decline seen in aging animals and that the same result will likely occur in aging human patients. In short, we are already confident that we can prevent and at least partially reverse Alzheimer’s disease. The FDA doesn’t need us to demonstrate efficacy: we already have good data on efficacy. What the FDA wants from us is more (and more detailed) data on the probable safety, which we’re about to provide.

While we are now ready to start on the FDA animal safety trial. Doing our FDA animal study isn’t a way of showing that telomerase gene therapy works – which is already clear from animal studies – but a detailed look at side effects, preparatory to our having permission to begin human trials next year.

Telomerase therapy works.

March 21, 2017

The Frustration of (Not) Curing Alzheimer’s

I am deeply frustrated by two plangent observations: 1) we squander scant resources in useless AD trials and 2) AD can easily be cured if we applied those same resources to useful AD trials. Applying our resources with insight, we will cure Alzheimer’s within two years.

The first frustration is that most pharmaceutical firms and biotech companies continue to beat their heads against the same wall, regardless of clinical results. Whether they attack beta amyloid, tau proteins, mitocondrial function, inflammation, or any other target, the results have been, without exception, complete clinical failures. To be clear, many studies can show that you can affect beta amyloid or other biomarkers of Alzheimer’s disease, but none of these studies show any effect on the clinical outcome. In the case of amyloid, it doesn’t matter whether you target production or the plaques themselves. Despite hundreds of millions of dollars, despite tens of thousands of patients, not one of these trials has ever shown clinical efficacy. Yet these same companies continue to not only run into walls, but remained convinced that if they can only run faster and hit the wall faster, they will somehow successfully breach the wall. They succeed only in creating headaches, accompanied by lost money, lost opportunities, and lost patients. The problem is not a lack of intelligence or ability. The researchers are – almost without exception – some of the most intelligent, well-educated, technically trained, and hard-working people I know. The irony is that they are some of the best 20th century minds I know. The problem, however, is that it is no longer the 20th century. If you refuse to adapt, refuse to change your paradigm, refuse to come into the 21st century, you will continue to get 20th century results and patients will continue to die of Alzheimer’s disease. Money and intelligence continues to be dumped into the same clichéed paradigm of pathology, as we aim at the wrong targets and misunderstand how Alzheimer’s works. And the result is… tragedy.

The second frustration is that we already know the right target and we already understand how Alzheimer’s disease works. We are entirely able to cure and prevent Alzheimer’s disease now. At Telocyte, we already have the initial resources we need to move ahead, but it is surprising how difficult it is for some people — wedded to 20th century concepts — to grasp the stunning potential, both clinically and financially of what we are about to do at Telocyte. We can not only reverse Alzheimer’s disease, but we can also cut the costs of health care while creating a stunningly successful biotech company in the process. We have the right tools, the right people, the right partners, and the sheer ability to take this through FDA trials. Already, we have several lead investors committed to our success. We are asking for a handful of additional investors, those who can see what the 21st century is capable of and who can understand why Telocyte is both the best clinical investment and the best financial investment in innovative medical care.

 

January 17, 2017

Intuition and Air Planes

The formulation of a problem is often more essential than its solution, which may be merely a matter of mathematical or experimental skill. To raise new questions, new possibilities, to regard old problems from a new angle requires creative imagination and marks real advances in science.

— Albert Einstein, 1938

 

Most “advances” are purely incremental. We make minor advances in current techniques or technology, we marginally improve our existing surgery or drugs, or we precisely define the specifications of previously known molecules. Rarely do we develop a novel technology, an unprecedented therapy, or a distinctively new theory. Truly innovative, unexpected, and compelling changes require that – as Einstein said – we “regard old problems from a new angle.” Genuine advances in science don’t require experimental skill, they require conceptual creativity.

Advances require us to look at things in an entirely new way.

Our ability to cure age-related diseases, such as Alzheimer’s, does not depend on incremental improvements, but on exactly such changes in how we look at things. The same, it turns out, is true of aging and – oddly enough – telomeres. We automatically view the world through our preconceptions, and this has always been true. Upon seeing the world’s first automobile, and unable to grasp the idea of a “horseless carriage”, we asked where the horse was attached. Upon seeing the world’s first television, and unable to grasp the idea of an electron tube, we asked how tiny people fit into that television cabinet. We continually look at new things, but we see them using old eyes.

As an analogy, imagine a group of castaways who have spend years trapped on a large, unexplored, tropical island. Two of the castaways are exploring an unfamiliar beach, when they come upon a large, entirely unexpected, and unfamiliar object. The first castaway, a bright academic, carefully measures the dimensions of every single part of the object. She tells the rest of the castaways about her measurements and they present her with an award for her hard work. To some acclaim, she explains that the unknown object might actually prove useful: the castaways could use it to 1) hang up their laundry, 2) provide shade from the hot tropical sun, and, 3) offer shelter during tropical storms. The second castaway has a more intuitive and creative bent. He carefully looks over the object, announces that it’s a plane, and offers to fly it off the island and save their lives.

Small Jet Plane

Sometimes, it’s not the measurements, it’s the ability to see new possibilities.

In the case of aging and age-related diseases, the odd thing is that most people don’t see how anything can be done. They still want to hang their laundry on the wings of the plane, without realizing that the airplane can fly them to safety. At best, they concede that aging might be slowed down, perhaps with diet, exercise, stress management, and other behavioral changes. The idea that aging can be reversed, or that age-related diseases can be cured, is anathema to their thinking, despite the solid evidence in cells, tissues, and animal studies. I first described the potential of telomeres for clinical therapy 20 years ago and the evidence has been growing steadily since then, yet the general public, the media, and many academics still think of telomeres as a place to hang laundry, provide shade, and offer shelter from the rain. Is it really that hard to recognize a plane? Apparently so.

It would appear that the only way to show people what telomeres can do is to fly the plane and safe lives.

 

December 29, 2016

The Ethics of Gene Therapy for Alzheimer’s Disease

The Ethics of Telomerase Treatment

 

The rationale behind telomerase therapy was first published in the medical literature two decades ago1 and has been updated and supported in academic textbooks2 and a more recent book for the public3 as well. The theoretical basis was cogent, even twenty years ago, and evidence has continued to support the hypothesis since then, in human cells, in human tissues, in informal human trials, and in formal animal trials. The potential implications of telomerase interventions in human age-related disease are unprecedented, well-supported, consistent, and feasible. The surprise is not that this approach is practical, but that it has taken so long to get telomerase therapy into clinical trials.

The reasons for the delay are complex and subtle, but are part of human nature.

For one thing, the clinical use of telomerase requires a novel and more sophisticated understanding of the aging process itself – at the genetic and epigenetic level – than has been the case until recently. Whenever a new scientific paradigm comes into play – whether a geocentric solar system, biological evolution, quantum mechanics, relativity, or anything else – it takes time for us to outgrow previous, less accurate models and to accept a more complex, but more accurate understanding of reality. Reality is not a democracy and a consensus is no guarantee of truth.

Putting it bluntly: old theories never die, their proponents do.

A second problem is credibility. In the case of telomerase clinical trials, there have been a number of cases in which individuals or companies (impatient with the regulatory delays so common in modern drug development) have attempted “end runs” of social and regulatory acceptance. Unfortunately (and perhaps unfairly), these off-shore human trials are often judged as lacking credibility and this can also undercut the credibility of other attempts. If a company evades the FDA (or the accepted regulatory agencies in other countries, such as the EMA or CFDA) and runs small off shore trials their results are not only specifically disbelieved, but result in general disbelief, even of serious biotech endeavors that DO attempt to meet FDA requirements. Moreover, the companies that attempt “end runs” often seek publicity and the outcome can be a perception that while there is significant publicity, that’s all there is. Unfairly or accurately, the academic judgement becomes one of “incredible claims, but no credible data”. Fair or unfair, just or unjust, such is human nature and such is the nature of clinical research in today’s world.

A third problem is a general misunderstanding of the role of telomerase in cancer. Telomerase never causes cancer, although small amounts can be necessary to permit cancer. More striking, however, is the role of telomerase in genomic stability: telomerase upregulates DNA repair, drastically lowering the risk of cancer. Dividing cells – including cancer cells – require at least minimal telomerase, yet a significant presence of telomerase (and sufficiently long telomeres) is protective against cancer. Some have even suggested that cancer is a disease of the young, and attribute it to the presence of telomerase, but the clinical reality is that cancer increases exponentially with age and that this increase is directly attributable to the down-regulation of DNA repair due to telomere shortening. In short, telomerase can be used to prevent cancer.

A fourth problem is a naïve conception of the pathology that underlies Alzheimer’s disease (and other age-related diseases). Citing data on mice, genetically altered to express a human amyloid protein, they extrapolate the results to human Alzheimer’s patients without appreciating the complex cascade of pathology that actually occurs in humans, let alone the differences between mice and human patients.

Finally, some people argue with the ethics of treating Alzheimer’s disease in clinical trials at all, let alone by using gene therapy. One wonders whether they have ever spend a year or two watching a loved one slide down into the abyss. I have known hundreds, perhaps thousands, of Alzheimer’s patients and their family members. Almost without exception, most would do literally anything, try literally anything in an effort to find a cure. The pity of AD is that it is 100% fatal and there is NO effective therapy – at the moment. While few of us would risk an experimental gene therapy (even one as promising at telomerase) to treat wrinkles or osteoporosis (particularly since neither one is fatal), all of us would consider such therapy to treat Alzheimer’s disease. It is scarcely surprising that scarcely a day goes by without someone contacting me, asking about potential treatments for Alzheimer’s disease. These are not people who live in ivory towers, these are not people with a “degree in microbiology”, these are people who are deeply and personally affected by the tragedy.

They’ve BEEN there. They UNDERSTAND.

One critic of gene therapy noted that: “there are 7 patients killed by gene therapy clinical trials” (over the past 20 years). Compare this with the seven hundred thousand Alzheimer’s patients who died in 2016 alone of not having had gene therapy. Why would I choose to be one of 700,000 deaths per year?

For those of us who have spent decades treating dying patients, for those of us who have Alzheimer’s disease, and for those of us who are terrified by what is happening to those we love who have Alzheimer’s disease, the ethics of using gene therapy to try curing the most frightening disease on earth are clear enough.

The ethical weight lies on the side of compassion.

 

 

  1. Fossel: Reversing Human Aging (1996) . Banks and Fossel: Telomeres, cancer, and aging – Altering the human lifespan (JAMA, 1997). Fossel: Telomerase and the aging cell – Implications for human health (JAMA, 1998).
  2. Fossel: Cells, Aging, and Human Disease (Oxford University Press, 2004).
  3. Fossel: The Telomerase Revolution (BenBella Press, 2015).

November 22, 2016

Teaching Cells to Fish

Aging is the slowing down of active molecular turnover, not the passive accumulation of damage. Damage certainly accumulates, but only because turnover is no longer keeping up with that damage.

It’s much like asking why one car falls apart, when another car looks like it just came out of the showroom. It’s not so much a matter of damage (although if you live up north and the road salt eats away at your undercarriage, that’s another matter), as it is a matter of how well a car is cared for. I’ve see an 80-year-old Duesenberg that looks a lot better than my 4-year-old SUV. It’s not how well either car was made, nor how long either car has been around, but how well each car was cared for. If I don’t care for my SUV, my SUV rusts; if a car collector gives weekly (even daily) care to a Duesenberg, then that Duesenberg may well last forever.

The parallel is apt. The reason that “old cells” fall apart isn’t that they’ve been around a long time, nor even that they are continually being exposed to various insults. The reason “old cells” fall apart is that their maintenance functions slow noticeably and that maintenance fails to keep up with the quotidian damage occurring within living cells. If we look at knees, for example, the reason that our chondrocytes fail isn’t a matter of how many years you’ve been on the planet, nor even a matter of how many miles a day you spend walking around. The reason chondrocytes fail is because their maintenance functions slow down and stop keeping up with the daily damage. As it turns out, that deceleration in maintenance occurs because of changes in gene expression, which occur because telomeres shorten, which occur because cells divide. And, not at all surprisingly, the number of those cell divisions is related to how long you’ve been on the planet (how old you are) and how many miles you walk (or if you play basketball). In short, osteoarthritis is distantly related to your age and to the “mileage” you incur, but not directly so. The problem is not really the age nor is it the mileage; the problem is the failure to repair the routine damage and THAT failure is directly controlled by changes in gene expression.

So what?

The telomeres and gene expression may play a central role, but if your age and the “mileage” is distantly causing all those changes in cell division, telomere lengths, gene expression, and failing cell maintenance, then what’s the difference? Why bother with all the complexity? Why not accept that age and your “mileage” are the cause of aging diseases and stop fussing? Why not simply accept age-related disease?

Because we can change it.

The question isn’t “why does this happen?” so much as “what can we do about it?” We can’t change your age and it’s hard to avoid a certain amount of “mileage” in your daily life, but we CAN change telomeres, gene expression, and cell maintenance. In fact, we can reset the entire process and end up with cells that keep up with damage, just as your cells did when you were younger.

Until now, everyone who has tried to deal with only the damage (or the damaged cells) failed because they focused on damage rather than focusing on repair. For example, if you focus only on cell damage (as most big pharma and biotech companies do when they go after beta amyloid or tau proteins in trying to cure Alzheimer’s disease), then any clinical effect is transient and the disease continues to progress – which is why companies like Eli Lily, Biogen, TauRx, and dozens of other companies are frustrated. And small wonder. Or if you focus only on the damaged cells (and try removing them), then the clinical effect is not only transient, but will end up accelerating deterioration (as discussed in last week’s blog, see figure below) – which is why companies like Unity will be frustrated. Their approaches fail not because they don’t address the damage, but because they fail to understand the deceleration of dynamic cell maintenance that occurs with age – and fail to understand the most effective single clinical target. The key target is not damage, nor damaged cells, but the changes in gene expression that permit that damage, and those damaged cells, to lead to pathology. We can’t cure Alzheimer’s or osteoarthritis by removing senescent cells, but we can cure them by resetting those same cells.

Why you shouldn't kill senescent cells.

Why you shouldn’t kill senescent cells.

In the cases of removing senescent cells (an approach Unity advocates), wouldn’t it be better to remove the damaged cells and then reset the telomeres of those that remain? But why remove the damaged cells if you can reset them as well, with the result that they can now deal with the damage and remove it – as well as young cells do?

Why remove senescent cells at all?

While you could first remove senescent cells, then add telomerase so that the remaining cells could divide without significant degradation of function, why would you bother? You could much more easily, more simply, and more effectively treat all the cells in an aging tissue, reset their aging process and have no need to ever remove senescent cells in the first place. Instead of removing them, you simply turn them into “younger” and more functional cells. For an analogy, imagine that we have a therapy that could turn cancer cells into normal cells. If that were true, why would anyone first surgically remove a tumor? If you could really “reset” cancer cells into normal cells, there would be no need to do a surgical removal in the first place. While there is no such therapy for cancer cells, the analogy is still useful. Removing senescent cells is not only counter-productive, but (if we reset gene expression) entirely unnecessary.

Removal is unnecessary (both as to cost and pathology), risky, and medically contraindicated. You’d be performing a completely unnecessary procedure when a more cost-effective and reliable procedure was available. It would be exactly like removing your tonsils if you already had overwhelming data showing that an antibiotic was reliable, cheap, and without risk.

A cell with full telomere lengths – regardless of prior history – is already superior. The accumulated damage is not a static phenomenon, but a dynamic one. Reset cells can clean up damage. This is not merely theory, but supported well in fact, based on both human cells and whole animal studies. We shouldn’t think of damage as something that merely accumulates passively. All molecules are continually being recycled. The reason some molecular pools show increased damage isn’t because molecules denature, but because the rate of turnover slows, thereby allowing denatured molecules (damage) to increase within the pool.

Try this analogy: we have two buildings. One is run by a company that invests heavily in maintenance costs, the other is run by a company that cut its maintenance budget by 50%. The first building is clean and well-kept, the second building is dirty and poorly-kept. Would you rather raze the second building and then rebuild it or would you rather increase the maintenance budget back to a full maintenance schedule and end up with a clean building? This is precisely the case with young versus old cells: the problem is not the dirt that accumulates, the problem is that no one is paying for routine maintenance. There are cells that are “too senescent” to save, but almost all the cells in human age-related disease can be reset with good clinical outcome. There is no reason to remove senescent cells any more than (in the case of a dirty building), we need to send in the dynamite and bulldozers.

Too often, we try to approach the damage rather than looking at the longer view. Instead of addressing the process, we address the outcome. It’s like the problem that often occurs in global philanthropy, where we see famine and think we can solve the problem with food alone. While the approach is necessary – as a stopgap – many are surprised to find that simply providing free food for one year, results in bankrupt farmers and recurrent famines in the following years. Or we provide free medical care in a poor nation, then wonder why there is a dearth of medical practitioners in years to come, without realizing we have put them out of business and accidentally encouraged them to emigrate to someplace they can make a living and feed their families. We intend well, but we perpetuate the problem we are desperately trying to solve. Treating famine or medical problems, like treating the fundamental causes of age-related disease, is not simple and cannot be effectively addressed with band aids and superficial interventions, such as addressing damage alone or removing senescent cells. Effective clinical intervention – like effective interventions in famine or global healthcare – require a sophisticated understanding of the complexity of cell function, an understanding of the dynamic changes that underlie age-related pathology.

An adage (variously attributed to dozens of sources) about fish and fishing provides a useful analogy here:

Give a man a fish, and you feed him for a day.

Teach a man to fish, and you feed him for a lifetime.

If we want to intervene effectively in age-related diseases – whether Alzheimer’s, osteoarthritis, or myriad other problems of aging – we shouldn’t throw fish at medical problems.

We should teach our cells to fish.

 

November 1, 2016

Making Things Worse

Imagine a factory which is operating at capacity, with a thousand workers. Some of the workers are doing a great job, but some are ill and not working hard. In fact, they are actively interfering with those who are working hard. In this factory, you can’t hire anyone new, so you have two choices: you can fire the bad workers or you try to improve their health. If you simply fire the bad workers, you have increased the work load for those who remain. Not surprisingly, they begin to get tired and ill as well, so the factory ends up failing even faster and before you know it, everyone is out of a job. On the other hand, if you can improve the health (and the attitude) of the workers who are tired and ill, the factory can become a success.

The factory is human tissue; the workers are your cells.

Let’s look at an example, such as the cells in your knee. Over time, the chondrocytes divide, become gradually more senescent, and begin to fail. The result is osteoarthritis. If you have mild osteoarthritis, you might (naively) consider simply removing senescent cells. This reliefs some of the inflammation and removes the cells that aren’t doing a good job (the tired workers), but the result is that you’ve just asked all the remaining cells to take up the slack (increased the work load for the remaining factory workers). In order to replace the cells that you’ve removed, the remaining cells now have to divide, which accelerates their own senescent changes, and hastens the failure of the entire tissue. In the case of the knee joint, the osteoarthritis improves temporarily, but you’ve just accelerated osteoarthritic changes in the long run. Instead of a slow joint failure, you’ve ensured that it fails even faster.

Several people have, in a charming burst of innocence, recommended that we do just that. Instead of resetting senescent cells and restoring cell and tissue function, they want to remove senescent cells in older tissues. Their hope is understandable, but their understanding is simplistic. Studies show that you may see temporary improvement in inflammation and secretory profiles, but what about long term risks? The problem is that those who want to kill off senescent cells lack a full appreciation of the dynamic pathology and the cellular consequences. They offer a simplistic view, but biology is seldom simplistic.

Why you shouldn't kill senescent cells.

Why you shouldn’t kill senescent cells.

 

Consider the knee again. A common concern is that of chondrocyte senescence (leading to osteoarthritis) in professional basketball players. Because of repetitive high-impact trauma, they lose chondrocytes at an accelerated rate compared to people whose knees are not subject to traumatic cell loss. The remaining chondrocytes divide to replace the lost chondrocytes, accelerating telomere loss, and accelerating osteoarthritic changes. The clinical result is due to tissue failure at an early age.

Those who are trying to treat tissue senescence by selectively removing senescent cells (instead of resetting them to a normal pattern of gene expression) are causing a transient improvement in tissue function, coincident upon the removal of dysfunctional, senescent cells (temporarily decreasing inflammatory biomarkers, for example), but the longer-term result is to accelerate cell senescence in all remaining cells. The result is a transient hiatus in inflammation and other biomarkers of cell senescence, followed by a more rapid decline in cell and tissue function. In the case of OA, for example, the outcome is to relief symptoms temporarily, only to then ensure a more rapid failure of the joint.

Our analogy remains apt. If you have a group of workers in a factory, some of whom are suffering from fatigue and are no longer producing, you have two possible interventions. Intervention #1 might be to fire all the tired workers, but the long-term result is that you increase the workload and failure rate among the remaining workers. Intervention #2 would be to find a way to restore the energy and interest among those workers who are fatigued. The analogy is a loose one, but the outcomes are predictable. Removing the “tired” cells within a tissue will accelerate pathology. Resetting the “tired” cells within a tissue will resolve pathology.

If you want to cure age-related disease, the solution is not to kill senescent cells, but to reset their gene expression to that of young cells.

 

October 18, 2016

The Carpets of Alzheimer’s Disease

Why do Alzheimer’s interventions always fail?

Whether you ask investors or pharmaceutical companies, it has become axiomatic that Alzheimer’s “has been a graveyard for many a company”, regardless of what they try. But in a fundamental way, all past and all current companies – whether big pharma or small biotech – try the same approach. The problem is that while they work hard at the details, they never examine their premises. They uniformly fail to appreciate the conceptual complexity involved in the pathology of Alzheimer’s. They clearly see the technical complexity, but ignore the deeper complexity. They see the specific molecule and the specific gene, but they ignore the ongoing processes that drive Alzheimer’s. Focusing on a simplistic interpretation of the pathology, they apply themselves – if with admirable dedication and financing – to the specific details, such a beta amyloid deposition.

But WHY do we have beta amyloid deposits? Why do tau proteins tangle, why do mitochondria get sloppy, and why does inflammation occur in the first place? Focusing on outcomes, rather than basic processes explains why all prior efforts have failed to affect the course of the disease, let alone offer a cure for Alzheimer’s.

Let’s use an analogy: think of a maintenance service. Any big organization, (university, pharmaceutical firm, group law practice, or hospital) has a maintenance budget. Routine maintenance ensures that – in the offices, clinics, or laboratories – carpets are vacuumed, walls are repainted, windows are cleaned, floors are mopped, and all the little details are taken care of on a regular basis. These are the details that make a place appear clean and well-cared for, providing a pleasant and healthy location. In most offices (as in our cells), we are often unaware of the maintenance, but quite aware of the end result: an agreeable location to work or visit. In any good workplace, as in our cells, maintenance is efficient and ongoing.

That’s true in young cells, but what happens in old cells?

Imagine what happens to a building if we cut its maintenance budget by 90%. Carpets begin to show dirt, windows become less clear, walls develop nicks and marks, and floors grow grimy and sticky. This is precisely what happens in old cells: we cut back on the maintenance and the result is that cells becomes less functional, because without continual maintenance, damage gradually accumulates. In the nervous system, beta amyloid, tau proteins, and a host of other things “sit around” without being recycled efficiently and quickly. Maintenance is poor and our cells accumulate damage.

All previous Alzheimer’s research has ignored the cut back in maintenance and focused on only a single facet, such as beta amyloid. You might say that they focused only on the dirty carpet and ignored the walls, the windows, and the floors. Even then, they have focused only on the “dirt”, and ignored the cut back in maintenance. Imagine an organization that has cut its maintenance budget. Realizing that they have a problem, they call in an outside specialist to focus exclusively on the loose dirt in the carpet, while ignoring the carpet stains, ignoring the window, walls, and floors, and then only coming in once. What happens? The carpets look better for a few days, but the office still becomes increasingly grungy and unpleasant. In the same way, if we use monoclonal antibodies (the outside specialist) to focus on beta amyloid plaque, the plaques may improve temporarily, but the Alzheimer’s disease continues and it is definitely unpleasant. Various companies have focused on various parts of the problem – the floors, the walls, the windows, or the carpets – but none of them have fixed the maintenance, so the fundamental problem continues. You can put a lot of effort and money into treating only small parts of Alzheimer’s, or you can understand the complex and dynamic nature of cell maintenance. Ironically, once you understand the complexity, the solution becomes simple.

The best solution is to reset cell maintenance to that of younger cells. Neurons and glial cells can again function normally, maintaining themselves and the cells around them. The outcome should be not another “graveyard for companies”, but life beyond Alzheimer’s .

 

Older Posts »

Powered by WordPress