Michael Fossel Michael is President of Telocyte

March 20, 2018

Aging and Disease: 2.0 – Cell senescence, Perspective

Most of us – when we think of cells at all – seldom appreciate that the idea of a “cell” is a modern idea, not quite two centuries old. One of the tenets of cell theory is that cells are the “basic unit of life”. This makes some sense but note that while the components of cells (mitochondria, for example) can’t live independently but can only survive as part of a cell, it’s also true that most cells don’t do very well independently either but can only survive as part of an organism. Nevertheless, and for good reason, cells are generally thought of at the building block of life, the unit out of which organisms are made. This sort of statement has exceptions (what about viruses?) and qualifications (some muscle “cells” tend to blur together), but overall, cells do function as the “basic unit of life”.

More importantly, most diseases operate at the cellular level or are most easily discussed in cellular terms. Want to understand the immune system? The focus is white blood cells. Want to understand heart attacks? The focus is the dying cardiac muscle cells. Want to understand Alzheimer’s? We tend to focus on dying neurons. In all these cases, other cells are not only involved, but are often the source of the pathology, but regardless of the complexities, qualifications, and exceptions, if you really want to understand a disease these days, you want to look at cells. You may be looking at an organ (such as the liver) or a tissue (such as the surface of a joint), but when push comes to shove, you need to get down into the cells to really understand how a disease works and what might be done about it.

Oddly enough, however, the idea of aging cells somehow never really took off until the middle of the last century. In fact, there was an overriding acceptance of the idea that cells did NOT age. Aging was (here, much hand waving occurred) something that happened between cells and not within them. Organisms certainly aged, while cells did not. This is not surprising when you think of the fact that all organisms derive from single (fertilized) cells that have a germ cell line going back to the origin of life, so while that cell line clearly hadn’t aged, you certainly aged. Voila! Cells don’t age, but you do. There was even a large body of (faulty) data showing that you could keep cells (in this case chicken heart muscle cells) alive and dividing “forever”.

In 1960, however, Len Hayflick pointed out that cells themselves age, and that this aging is related to the number of times the cells divides. Moreover, this rate of cell aging is specific to both species and cell type. While germ cell (think ova and sperm) don’t age, the normal “somatic cells” of an organism show cell aging. By the way, this aging had no relationship to the passage of time but was strictly controlled by the number of cell divisions. In other words, entropy and the passage of years was irrelevant. The only variable that mattered was cell division itself. Entropy only triumphed as cells divided and only in somatic cells. Len had no idea of how cells could count, although he termed this mechanism (whatever it was) the “replicometer” since it measured cell replications.

A decade later, Alexey Olovnikov figured out the mechanism. He pointed out that because of the way chromosomes replicated, every time you replicated a chromosome, you would lose a tiny piece at the end of the chromosome, the telomere. Clearly that wasn’t all there was to it or – since cells and chromosomes have been replicating for billions of years – there wouldn’t be any chromosomes (or life) left on the planet. There had to be something that could replace the missing piece, at least in some cells, such as the germ cell line. That something was telomerase. At least as importantly, however, Alexey pointed out that this was probably the mechanism of Len Hayflick’s “replicometer”: the number of cell divisions was measured in telomere loss.

As it turns out, Len (about cell divisions) and Alexey (about telomeres) were both right. The connection was finally shown in 1990 by Cal Harley and his colleagues, who found that telomere length exactly predicted cell aging and vice versa: if you knew one, you knew the other. At first, this was merely correlation, if a remarkably good one, but it didn’t take more than a few more years to show that telomere loss determined cell aging. Specifically, if you reset the length of the telomere, then you reset cell aging. If, for example, you reset the telomere length in human cells, then those “old” cells now looked and acted exactly like young cells. In short: you could reverse cell aging at will.

This prompted the first book (Reversing Human Aging, 1996) and the first articles in the medical literature (published in JAMA, 1997 & 1998) to suggest that not only did cell aging underlie and explain human aging, but that cell aging could be reversed, and that the clinical potential was unprecedented in the ability to cure and prevent age-related human disease. This was rapidly followed by a set of experiments showing that if you reextended telomeres in aged human cells, you could grow young, healthy human tissues in vitro, specifically in human skin, arterial tissue, and bone. The entire area was extensively reviewed in what is still the only medical textbook on this area (Cells, Aging, and Human Disease; Oxford University Press, 2004). Since then, there have been at least three peer-reviewed publications looking at the use of telomerase activators, each of which showed intriguing and significant (if not dramatic) improvements in many age-related biomarkers (e.g., immune response, insulin response, bone density, etc.).

In a landmark paper (Nature, 2011), DePinho and his group, then at Harvard, showed that telomerase activation in aged mice resulted in impressive (and unprecedented) improvements not only in biomarkers, but (to mention CNS-related findings alone) in brain weight, neural stem cells, and behavior. This was followed by an even more impressive result (EMBO Molecular Medicine, 2012) by Blasco and her group (at the CNIO in Madrid), who showed that the same results could be accomplished using gene therapy to deliver a telomerase gene to aged mice. This result was the more impressive because precisely the same approach can be used in human trials.

Exactly this technique is planned for human Alzheimer’s disease trials next year. But to get there, we need to understand not only the background history, but how cells themselves age, the results of cell aging, and why we can intervene.

Next time: 2.1 Cell senescence, why cells divide


Aging and Disease: An Index

For those interested in knowing where this blog is going (or where it has been), here is an index of all previous and planned posts for this series on Aging and Disease. Note that the planned posts may change as we progress.

0.1 Prologue

1.0 Aging, our purpose, our perspective

1.1 Aging, what is isn’t

1.2 Aging, what we have to explain

1.3 Aging, what it is

1.4 Aging, the overview

1.5 Aging, misconceptions

2.0 Cell senescence, perspective

2.1 Why cells divide

2.2 Telomeres

2.3 Changes in gene expression

2.4 Changes in molecular turnover

2.5 Changes in molecular turnover, most molecules

2.6 Changes in molecular turnover, DNA repair

2.7 Changes in molecular turnover, Mitochondria

2.8 Changes in molecular turnover, extra-cellular molecules

2.9 Cell senescence and tissue aging

3.0 Aging disease

3.1 Cancer

3.2 Direct and indirect aging

3.3 Skin

3.4 Immune system

3.5 Osteoarthritis

3.6 Osteoporosis

3.7 Arterial (vascular) disease

3.8 CNS disease

3.9 CNS: Parkinson’s disease

3.10 CNS: Alzheimer’s disease

4.0 Treating age-related disease, what doesn’t work, small molecular approaches

4.1 What doesn’t work, killing senescent cells

4.2 What works, lowering risks

4.3 What works, resetting gene expression

5.0 Telomerase in the Clinic

March 15, 2018

Aging and Disease: 1.5 – Aging, Misconceptions

Misconceptions regarding the current model of aging are rampant and they tend to fall into one of several categories. These include Straw man arguments, unfamiliarity with how age-related human pathology occurs, simplistic views cell senescence, genes, and expression, or misguided approaches to measuring telomeres (usually in the wrong cells).

Straw man arguments

          The Earth can’t possibly be round, or you’d fall off the other side.

This sort of argument attacks a position by attacking the wrong target, then claiming victory. The approach is called a “straw man argument”. Rather than facing an actual opponent (or making a logical argument), you build a man out of straw (or offer up a faulty premise), attack it and beat it (or disprove the faulty premise), then claim that you have beaten your opponent (or proven your entire argument). Straw man arguments are safer and easier but they’re dishonest and they don’t lead to clinical progress.

Several centuries ago, some clerics argued that if Copernicus was right about the sun being the center of the solar system, then he must be denying the existence of God (the straw man) and the truth of the Bible (another straw man). Never mind the astronomical data: critics focused on the religious straw man. A century ago, some people argued that humans could never fly because humans are heavier than air. You couldn’t deny the straw man (we really are heavier than air), but it didn’t affect validity of flying machines. Even the Wright brothers would be shocked senseless by the weight of the modern commercial jet. History is replete with “disproof’s” that misrepresent or make wildly erroneous straw man arguments about new thoughts, new theories, and new technologies.

Straw man arguments do nothing but prevent progress.

The telomerase theory of aging has frequently been criticized using straw man arguments. The most common example is suggesting that telomere length (instead of change in length) is important to aging, then demolishing the straw man. Cellular aging – as marked by changes in gene expression – is not modulated by telomere length but is modulated by changes in telomere length. Telomere length per se is a straw man. The fact that some young mice have 150kbp telomeres (but a 2-year lifespan) while some young humans have 15kbp telomerase (but 80-year lifespans) is irrelevant: it’s a straw man. Cell aging is determined by the gradual changes in gene expression and these are determined by relative telomere loss, not by absolute telomere length. To say that some species have longer telomeres and shorter lifespans while other species have shorter telomeres and longer lifespans is interesting but misses the point. Telomere length (the straw man) has nothing to do with lifespan or cell aging. The key factor isn’t length, but the change in length of the telomeres and – more directly – how the changing length of telomeres changes the pattern of gene expression. To focus on telomere length creates a wild goose chase. The key feature is not the telomere (and certainly not the absolute telomere length), but the patterns of gene expression as modulated by the changes in telomere length over time.

Human pathology: which cells cause the disease?

A more egregious error occurs when the straw man is due to a stunning naiveté regarding age-related pathology. In this case the error lies in misunderstanding clinical medicine rather than in misunderstanding telomere biology. This type of straw man argument has surfaced repeatedly online, in articles, and (sadly) even in academic discussions. The two most typical (and most egregious) examples aim at heart disease and dementia. The most typical false statements are:

  1. Cell aging can’t explain heart disease, since heart cells don’t divide.
  2. Cell aging can’t explain dementia, since neurons don’t divide.

These statements, as is often the case, tell us far more about the critic than they tell us about the target of the criticism. In these two examples, we discover that the critics have no understanding of the clinical pathology underlying either heart disease or dementia. The two statements are not only straw man arguments but display an extraordinary lack of clinical knowledge. While it’s true that heart cells and neurons generally don’t divide, that fact has nothing to do with the actual disease process nor the role of cell aging.

Classical “heart” disease (i.e., myocardial infarction, angina, etc.) doesn’t begin in the heart muscle (whose cells rarely divide), but in the endothelial cells that line the coronary arteries (whose cells divide regularly). The observation that heart cells don’t divide is (more or less) accurate but has nothing to do with heart disease being caused by cell aging. Heart muscle cells are the innocent bystanders. The vascular endothelial cells are where the pathology begins. To blame heart disease on heart muscle cells is like blaming the murder victim rather than the murderer. Heart cells are the victim, not the perpetrator. We might have equally (and just as foolishly) said that “cholesterol can’t explain heart disease, since heart cells don’t accumulate cholesterol.” The latter is true, but it’s hardly relevant. Cholesterol’s role (like that of cell aging) lies in the vascular lining cells, not in the heart muscle cells. Whether we are talking about cell aging or cholesterol deposits, the heart cells are the innocent bystanders and it’s the coronary arteries that are the problem. Cell aging accurately explains everything we know of human “heart disease”, as well as age-related vascular disease generally (e.g., strokes, aneurysms, peripheral vascular disease, congestive heart failure, etc.). The straw man arguments are disingenuous and largely based on a willful (a woeful) ignorance of human age-related disease.

Much the same is true for dementia. Neurons don’t divide (much, if at all, in the adult human), but glial cells (such as microglia) both divide and have been implicated in the basic pathology that underlies Alzheimer’s and many other dementias. We know, for example, that Alzheimer’s patients have shorter telomeres than do age-matched patients without Alzheimer’s. In short, cell aging explains dementia logically and accurately, while the lack of neuronal cell division has nothing to do with the argument (or the disease). In this context, such Straw man arguments display the distressing naiveté of those using them.

Cell senescence, genes, and expression

Cell senescence is often regarded as all-or-nothing: a cell is either young or old, but never anything in-between. Over the past half century, this error has often resulted in people speaking past one another, never recognizing that they have different definitions of “cell senescence”. While it’s true that there is an endpoint (a senescent cell that is incapable of division or much else), short of that extreme, cell senescence remains a relative matter. This is not only seen in the physiology (how well does the cell function?) but in terms of gene expression. Like cell senescence, gene expression is not all-or-nothing. It’s true that a particular gene at a particular time is either being transcribed or not, but if we look at the rate of gene expression over any reasonable time duration (e.g., an hour, a day, or a week), we see that the rate of gene expression looks more like a continuum. You might say that it’s “analog” rather than “digital”. More importantly, that rate of gene expression can be seen to change not only over time, but as an integral part of cell senescence. In “older” cells, while we find that the genes and gene transcription process is perfectly normal (i.e., the same quality of genes and gene transcription as a “young” cell), we find that the rate of gene expression is now quite different. Putting it simply, the rate of gene expression slows down as a cell segues from a young cell to a senescent cell. Thinking of cell senescence and gene expression as all-or-nothing is a troublesome error but is not the only error when it comes to genes and aging.

Perhaps the most rampant error lies in thinking of “aging genes”. A century ago, it wasn’t unusual to hear people talk about genes for any number of things: intelligence, beauty, compassion, etc. While there are genes that play a role in these (and myriad other characteristics), the relationship between intelligence and genes has proven to be remarkably complex, requiring input from epigenetics, environment, diet, and other factors. Even if we restrict ourselves to genes alone, there are probably hundreds of genes that play a role in determining intelligence. Moreover, these same genes also play dozens of roles at once, including roles in immunity, endocrine development, motor function, memory, and cells throughout the body and in every tissue. So are these genes really “intelligence” genes? To think of them that way is merely to expose both our ignorance and our naiveté. These are systems genes; they play dozens (hundreds?) of interacting roles in virtually every part of the body. Much the same can be said for “aging” genes. Short of a few genes that characterize some of the progerias (for example, the lamin-A gene in H-G progeria), there are no aging genes. To look at your gene scan and point to an “aging gene” is exactly like the early phrenologists who looked at your skull and pointed to a “bump of combativeness” or a “bump of sublimity”. There are no such bumps and there are no such “aging genes”. There are certainly genes that play a role (or much more likely, play multiple roles) in the aging process. Unquestionably, there are innumerable genes that increase (or decrease) your risk of age-related diseases or that increase (or decrease) the probable length of your lifespan, but there are no specific “aging genes”, unless you’d like to go to the other extreme and acknowledge that all genes are aging genes, as in some sense, they are.

Misguided approaches to measuring telomeres

About once every two weeks, I receive a research article that goes something like this. The authors measured the telomeres of several dozen volunteers, then performed an intervention (changed the diet, taught them meditation, increased their daily exercise, etc.), then measured the telomeres again in six months, and found that the telomeres had lengthened. They conclude that the intervention lengthens telomeres (and, by implication, reverses aging). While they might be right, the data prove certainly don’t justify their conclusions. If they are right, they are right despite poor design, poor analysis, poor thinking, and a very shaky knowledge of cells. There are several problems these types of study, starting with the fact that almost every one of these studies only measures telomere lengths in white blood cells, which are easy to obtain, but not particularly useful (nor are they valid or reliable, as we’ll see). A typical study of this type is summarized in Figure 1.5a.

The first problem is that even if they truly lengthened the telomeres in those white blood cells (and see below), most of us die of aging cells in our arteries or aging cells in our brains (not to mention the problems we have with our joints, our bones, our kidneys, etc.). Measuring the telomeres in white cells tells us precisely nothing about these more important cells and tissues. It’s much like using hair color (how gray is your hair?) to assess your risk for having a heart attack or Alzheimer’s disease. White cells are the wrong cells to look at. They may be easy to get, but they don’t get you anywhere.

The second problem is that white cells are a dynamic population and they respond to almost any stress by dividing (and shortening their telomeres). Once the stress is gone, the white cells get replaced by “younger” white cells (with longer telomeres) from the stem cells in your bone marrow. So, you might say that if you only measure your white cell telomeres, then you will appear older as a result of any stress and you will appear younger again once the stress goes away. For example, you will appear to have older white cells if you have an infection, if you just had a loved one die, if you lost your job, or if you are malnourished. The opposite is equally true: your white cells will appear younger if your stress resolves, since your white cells will then be replaced with “younger” cells from the stem cell compartment in your bone marrow. Note that if we actually measured your bone marrow cells (and not the circulating white cells), you would find that your hematopoietic stem cells are slowly aging almost regardless of what you do. Whether we cure your infection, improve your diet, make you exercise regularly, or have you meditate, makes little difference to your marrow cells. Almost any clinical intervention might affect your circulating white cells, but there is no evidence that any intervention can make your stem cells younger (or can increase their telomeres). To focus on the white cell telomeres is an illusion. This is not to say that these various interventions aren’t useful and may not improve your health, but there is no evidence that any of these interventions make you any younger. For that matter, there may be evidence that these interventions change the particular white cells you sample (so the new sample has longer telomeres), but there is no evidence that these interventions lengthen telomeres, let alone make you any younger.

To give you an analogy, imagine that you are trying to make people younger in a large country (the US, for example), so you measure the average age in a particular block of a major city (Boston, for example), then you perform an intervention (an urban renewal program, for example) over several decades (between 1950 and 2018, for example), then measure the average age of people living in that same block. The average age may well be lower in 2018 than it was in 1950, but that does NOT mean that you have made anyone get younger and it certainly doesn’t mean that the rest of the country is now younger. The population has changed: some people moved out, some moved in and those that moved in tended to be younger.

The same thing happens when you measure white cell telomeres: the old white cells are gone, and new white cells have “moved into the block”. To conclude that you have made the white cells (let alone the whole body) younger is silly, to say nothing of entirely unsupported by the data. This is not to say that the various interventions purported to affect telomeres and/or aging (meditation, vegetarian diets, exercise, or in one case, living in zero gravity) may not have physical benefits (or that they might actually affect telomeres or aging), but that not a single one of these various interventions has valid data to answer those questions. Measuring peripheral white cell telomere lengths is not only fraught with errors, but (at least as far as most current research goes) has approximately the same validity as casting a horoscope.

Finally, most telomere measurements are done by average length, which is relatively cheap but not particularly relevant. Tissue function is highly dependent upon the oldest (not the average) cells in the tissue and cell function is highly dependent upon the shortest (not the average) telomere in the cells. Measuring the average telomere may be cheap and easy, but it’s like trying to figure out the risk of terrorism in a city by measuring the average person. The average person isn’t a terrorist, but that’s not the point. It’s the extremes that determine the overall risk of terrorism in a community. It only takes a few terrorists to result in disaster and, in your tissues, it only takes a few senescent cells to result in disease. Within the cells, it only takes a few short telomeres to result in a dysfunctional cell. The upshot is that when we measure telomere lengths, the measurement that is most often used is the measurement that doesn’t tell you what you know. The result is that most studies measure the wrong thing and then, with perfect confidence, draw the entirely unwarranted conclusions. No wonder the literature is misleading.

Understanding aging – and understanding cell aging – is replete with pitfalls and misconceptions that are all-too-common, even in the research literature. Leaving these caveats aside for now, however, let’s delve directly into the aging process itself, starting with the cell.

How does a cell age?


Next time: Aging and Disease: 2.0 – Cell senescence, Perspective

March 6, 2018

Aging and Disease: 1.4 – Aging, the Overview

How does aging work?

So far, in the prologue (section 0) and the section 1 posts, we have discussed a perspective, what aging isn’t (and is), and what we need to explain in any accurate model of aging. In this post, I provide an overview of how the aging process occurs, from cell division to cell disease, followed by a post on the common misconceptions about this model, which will complete section 1. Section 2 is a series of posts that provide a detailed discussion of cell aging, section 3 explores age-related disease, and section 4 maps out the potential clinical interventions in aging and age-related disease. In this post, however, I provide an outline or map of the entire aging process. This will shoehorn much of what we know about cellular aging and age-relaed disease into a single post, giving you an overview of how aging works.

Cell Division

Aging begins when cells divide. Before moving beyond this, however, we need to ask ourselves why cells divide in the first place. The impetus for cell division is itself a driving force for aging, and the rate and number of cell divisions will control the rate of aging. IF cell division “causes” aging, then what causes cell division? As with any comprehensive examination of causation, we immediately discover that if A causes B, there is always something (often ignored) that must have caused A in turn. In short, causation (and this is equally true of aging) is a cascade of causation that can be pushed back as far as you have to patience to push the question. In the case of cell division, the next upstream “cause” is often environmental and is related to daily living itself. For example, we loose skin cells because we continually slough them off and we therefore need our cells to divide and replace the cells that we lose. As with most tissues, the rate of cell division is strongly modulated by what we do (or what we’re exposed to). If we undergo repeated trauma or environmental stress, then we lose more cells (and consequently have more frequent cell divisions) than we would otherwise. In the knee joint, for example, cell division in the joint surface will be faster in those who undergo repetitive trauma (e.g., basketball players) than in those who engage in low-impact activities (e.g., yoga). In the arteries, cell divisions along the inner arterial surface will be faster in those suffering from hypertension than in those with lower blood pressure (and lower rheological stress). Not all cells divide regularly. While some cells rarely divide in the adult (muscle cells, neurons, etc.), those that do divide regularly – such as skin, endothelial cells in the vascular system, glial cells in the brain, chondrocytes in the joints, osteocytes in the bone, etc. – will vary their rate of division in response to trauma, toxic insults, malnutrition, infections, inflammation, and a host of other largely environmental factors. Putting it simply, in any particular tissue you look at, the rate of cellular aging depends on what you do to that tissue and those cells. Repeated sunburns induce more rapid skin aging, hypertension induces more rapid arterial aging, close head injuries induce more rapid brain aging, and joint impacts induce more rapid joint aging. In all of these cases, the clinical outcome is the acceleration of tissue-specific age-related disease. So while we might accurately say that aging begins when cells divide, we might equally go up one level and say that aging begins in whatever prompts cell division. Any procees that accelerates cell loss, accelerated cell division, and thus accelerates aging and age-related disease.

Telomere Loss

Cell division has limits (as Len Haylfick pointed out in the 1960’s) and tee limits on cell division are, in turn, determined by telomere loss (as Cal Harley and his colleagues pointed out in the 1990’s). Telomeres, the last several thousand base pairs at the end of nuclear chromosomes (as opposed to mitochondrial chromosomes), act as a clock, setting the pace and the limits of cell division. In fact, they determine cell aging. Telomeres are longer in young cells and shorter in old cells. Of course, it’s never quite that simple. Some cells (such as germ cells) actively replace lost telomere length regardless of chronological age, while others (such as neurons and muscle cells) divide rarely and never shorten their telomeres as the adult tissues age. Most of your body’s cells, those that routinely divide, show continued cell division over the decades of your adult life and show a orrelated shortening of their telomeres. Note (as we will in the next blog post) that it is not the absolute telomere length that is the operative variable, but the relative telomere loss that determines cell aging. Nor, in many ways, does even the relative telomere length matter, were it not for what telomeres control “downstream”: gene expression.

Gene Expression

As telomeres shorten, they have a subtle, but pervasive effect upon gene expression throughout the chromosomes and hence upon cell function. In general, we can accurately simplify most of this process as a “turning down” of gene expression. The process is not all-or-nothing, but is a step-by-step, continuum. Gene expression changes gradually, slowly, and by percent. The change is analogous to adjustments in an “volume control” rather the use of an on/off switch. Where once the expression of a particular gene resulted in a vast number of proteins in a given time interval, we now see 99% of that amount are now produced in that time interval. The difference may be one percent, it may be less, but this small deceleration in the rate of gene expression becomes more significant as the telomere shortens over time. Whereas the young cell might produce (and degrade) a pool of proteins using a high rate of molecular “recycling”, this recycling rate slows with continued cell division and telomere shortening, until older cells have a dramatically slower rate of molecular recycling. While you might suspect that a slightly slower rate of turnover wouldn’t make much difference, this is actually the single key concept in aging and age-related disease, both at the cellular and the tissue levels. We might, with accuracy and validity, say that aging is not caused by telomere loss, but that aging is caused by changes in gene expression and, even more accurately, that aging is caused by the slowing of molecular turnover.

Molecular Turnover

To understand molecular turnover is to understand aging. As we will see later in this series (including a mathematical treatment with examples), the predominant effect of slower molecular turnover is to increase the percentage of denatured or ineffective molecules. Examples would include oxidized, cross-linked, or otherwise disordered molecules due to free radicals, spontaneous thermal isomerization, or other disruptive, entropic processes. The cell’s response to such molecular disruption is not to repair damaged molecules, but to replace such molecules with new ones. This replacement process, molecular turnover, is continual and occurs regardless of whether the molecules are damaged or not. The sole exception to the use of replacement rather than repair is that of DNA, which is continuall being repaired. But even the enzymes responsible for DNA repair are themselves being continually replaced and not repaired. There are no stable molecular pools, intracellular or extracellular: all molecular pools are in dynamic equilibrium, undergoing continual turnover, albeit at varying and different rates. Some molecules are replaced rapidly (such as the aerobic enzymes within the mitochondria), others more slowly (such as collagen in the skin), but all molecular pools are in a condition of dynamic equilibrium. More importantly, if we are to understand aging, the rate of molecular turnover slows in every case as cells senesce and the result is a rise in the proportion of damage molecules. To use one example, beta amyloid microaggregates in the brain (in Alzheimer’s disease) occur not simply result because damage accrues over time (entropy). Amyloid microaggregates begin to form when the rate of glial cell turnover of beta amyloid molecules (the binding, internalization, degradation, and replacement of these molecules) becomes slower over time and is no longer keeping pace with the rate of molecular damage (maintenance versus entropy). The result is that beta amyloid molecular damage occurs faster than molecular turnover, and the the histological consequence is the advent of beta amyloid plaques. The same principle – the slowing of molecular turnover with cell aging – applies to DNA repair and the result in an exponential rise in cancer, as we will see in later sections. This general problem of slower molecular turnover applies equally within aging skin, where wrinkles and other facets of skin aging are not the result of entropy, but result from the failure of maintenance (e.g., turnover of collagen and elastin) to keep up with entropy. The incremental and gradual slowing of molecular turnover or molecular recycling is the single most central concept in aging. Aging isn’t caused by damage, but by the failure of maintenance to keep up with that damage. Aging results from insufficient molecular turnover.

Cell and Tissue Dysfunction

The slower molecular turnover and it’s outcome – an increase in dysfunctional molecules – results in a failure within and between cells. Within the cell, we see slower DNA repair, leakier mitocondrial membranes, an increase in the ratio of ROS/ATP production (creating more free radicals and less energy), decreasinly effective free radical scavengers, and a general decrease in the rate of replacement of those molecules that are damage, whether by free radicals or otherwise. For the cell itself, the outcome is a gradual loss of function and an increase in unrepaired DNA. With respect to free radicals, for example, it’s not that free radical damage causes aging, but that cellular aging causes free radical damage. As our cells age (and molecular turnover slows), our mitochondria produce more free radicals (since the aerobic enzyemes aren’t as frequently replace), the mitochondrial membranes leak more free radicals (since the lipid molecules in the mitochondrial aren’t as frequently replaced), free radicals are more common in the cytoplasm (since free radical scavenger molecules are as frequently replaced), and consequent damage becomes more common (since damaged molecules aren’t as frequently replaced). Free radicals do not cause aging: they are merely an important by-product of the aging process. As in cells, so in tissues: just as molecular turnover slows and results in cellular dysfunction, so do do we see dysfunction at higher levels: tissue, structural anatomy, and organ systems. Slowing of molecular turnover expresses itself in dysfunctional cells, an increase in carcinogenesis, and ultimately in clinical disease.

Age-Related Disesase

At the clinical level, the changes in cell and tissue function result in disease and other age-related changes. Wrinkles, for example, may not be a disease, but they result from exactly the same cellular processes outlined above. In each case, however, we see age-related changes or age-related diseases are the result of underlying “upstream” processes that follow a cascade of pathology from cell division, to telomere shortening, to epigenetic changes, to a slowing of molecular turnover, to growing cellular dysfunction. As glial cells “slow down” (in their handling of amyloid, but also in regard to mitochondrial efficiency and a host of other subtle dysfunctions), the result is Alzheimer’s and the other human dementias. As vascular endothelial cells senesce, the result is coronary artery disease, as well as heart attacks, strokes, aneursyms, peripheral vascular disease, and a dozen other age-related diseases and syndromes. As chondrocytes senesce, the result is ostoarthritis. As osteocytes senesce, the result is osteopororis. Nor are these the only manifestations. We see cell senescence in renal podocytes, in dermal and epidermal cells of the skin, in fibroblasts within the lung, and in essentially every tissue that manifests age-related changes. Age related disease and age-related changes are, at the clinical level, the predictable and ultimate outcomes of cellular aging.

The above model is accurate, consistent, and predictively valid, yet there have been a number of crucial misconceptions that have remained common in the literature, making it difficult for many people to grasp the model correctly. Next time, we will explore these errors before moving into the details of aging and disease.

Next: 1.5 – Aging, Misconceptions


Powered by WordPress