Michael Fossel Michael is President of Telocyte

February 20, 2018

Aging and Disease: 1.3 – Aging, What it IS

What IS aging?

An explanation of aging must account for all cells, all organisms, and – if we are candid – all of biology and isn’t merely entropy. Prior posts defined our boundaries: what we must include – and exclude. We know that we cannot simply point to entropy, wash our hands of any further discussion, and walk away with our eyes closed. Likewise, an honest explanation can’t simply consider humans and a few common mammals but ignore the entire gamut of Earth’s biology.

So, what IS aging? As a start, we might acknowledge that life has been on Earth for more than four billion years and during that entire time, life has resisted entropy. This serves as an excellent starting point: life might be defined as the ability to maintain itself in the face of entropy. In that case, we might rough out our initial definition: aging is the gradual failure of maintenance in the face of entropy.

We miss the point, however, unless we realize that aging is an active, dynamic process. Aging is not simply a matter of a failure of maintenance in the passive sense. To use an analogy, if entropy were an escalator carrying us downwards, then it is not the only process involved. It is countered by cell maintenance, which is precisely like walking upwards on the same escalator (see Figure 1.3a). Young cells are entirely capable, as are germ cells and many other cells, of indefinitely maintaining their position at the top of the escalator. Entropy and maintenance are equally balanced. Older cells, however, have a subtle (and sometimes not so subtle) imbalance, in which maintenance is less than entropy.

As aging occurs, the problem is not that the escalator (entropy) carries us downwards, but that we are no longer walking upwards (maintenance) at the same rate as the escalator. To view aging as the descending escalator alone is to miss the essential point of biology: life remains on this planet because cells and organisms “walk upwards” and maintain themselves indefinitely in the face of being “carried downwards” by entropy. The process is a dynamic balancing act. To explain aging, it is not enough to cite the escalator, but requires that we explain why maintenance fails, and then only in certain cells and at certain times, while remaining functional in other cells and at other times. Aging is far from universal. A valid explanation of aging must account for why aging occurs in some cases yet does not occur in other cases.

 

Aging is not the escalator but is a combination of two forces: entropy carrying cells into dysfunction and maintenance ensuring that cells remain functional. Aging occurs only when maintenance is down-regulated. If maintenance is not down-regulated, then the cells and the organism do not age. Aging cells, such as many somatic cells, age because they down-regulate maintenance. “Immortal” cells, such as germ cells, do no age because they do not down-regulate maintenance.

We might try an analogy to see where it takes us, comparing biological aging to “aging” in a car. We could say that aging in a car is not simply what happens as the car undergoes weathering and degradation over time. Rather, car aging would be what happens if we fail to maintain the car on a regular and detailed basis. There are exceptional antique cars that have been in active use longer than most human lifetimes, but they are in excellent shape not because they had better parts (i.e., have the right genes) or were made by a better manufacturer (i.e., are part of the right species), but because they were maintained scrupulously and carefully on an almost daily basis by generations of owners. Such cars are oiled, painted, repaired, realigned, and cared for on an almost daily basis, compared to most cars that are lucky to be cared for annually. The critical difference is not the chronological age of the car nor the amount of wear-and-tear, but the frequency and excellence of their maintenance. Given frequent and excellent maintenance, sufficient to keep up with entropy, a car can last indefinitely, while with sloppy and merely annual maintenance, cars typically last only a few years before “aging” takes them off the road.

In a sense, organisms are no different: the degree of aging is not just a matter of time or entropy, but of the quality and frequency of maintenance. Likewise, aging is not purely a matter of which genes or what species pertain to that organism. Rather, aging is a matter of the rate of repair and recycling within cells, that is, maintenance in the face of entropy.
It’s not the genes, it’s the gene expression.

Let’s use another example, that of water recycling. Every molecule of water that you ingest has been recycled endlessly, but the speed and efficiency of that recycling determines the quantity and quality of the water you drink. Imagine that we plan a trip to Mars. If the average astronaut needs 2 liters per day and 4 astronauts are on a 2.5-year roundtrip to Mars, we might calculate that we need to bring 7 tons of water. But that (incorrectly) assumes no recycling. We can get by on a lot less water, depending on how we recycle. The amount we need to bring with us depends not only on the amount the astronauts use daily, but on the quality and rate of recycling (from urine, for example). The faster the recycling, the less water we need to carry along. The better the quality of our recycling, the longer we can stay healthy.

In a “young” and efficient cell, we recycle molecular pools rapidly and effectively. In an old cell, however, the rate and effectiveness of the recycling decreases. The analogy for our Mars trip would be slower recycling, along with an increasing percent of contaminants that are not being removed in our water recycling unit. The outcome, whether in aging cells or a mission to Mars, is gradually increasing dysfunction. Aging cells no longer function normally (as when they were young cells) and our sickening astronauts no longer function normally either (as when they started out on Earth).
As another example, you oversee a huge office building with multiple daily customers and hundreds of employees. Every night, your cleaning crew comes through, mopping the solid floors, vacuuming the carpets, cleaning the windows, and (when necessary) repainting the walls. Maintenance is frequent and excellent; as a result, the building always looks new (i.e., young). Now let’s radically cut back on your maintenance budget. Instead of daily maintenance, the carpets are vacuumed once every two weeks, the floors are mopped once a month, the windows are cleaned once a year, and repainting occurs once a decade. The resulting problem is not due to the amount of dirt (the entropy), nor the quality of the vacuum, the mop, the washer fluids, or the paint (think of these as the quality of your genes). The problem isn’t the dirt nor is it the cleaning crew, but the rate of maintenance. The outcome is that your building looks dirty and is increasingly incapable of attracting clients or customers – or for that matter, incapable of retaining employees. This parallels the changes in aging cells: the genes (the cleaning products) are excellent and the quality of repair (the cleaning staff) are both excellent, but the frequency of maintenance is too low to maintain the quality of the building. In aging cells, molecular turnover is too slow to keep up with entropic change.

This same analogy could be applied to home repairs, garden weeding, or professional education. The problem is not entropy, but our ability to resist entropy and maintain function. Aging occurs because cell maintenance becomes slower. The quality of gene expression is fine, but molecular turnover (see figure 1.3b) – the “recycling rate” – declines. This effect is subtle but pervasive and the result is increasing dysfunction. This concept – the failure of maintenance to keep up with entropy — is not only central to aging but can account for all of aging and in all organisms, whether at the genetic level, the cellular level, the tissue level, or the clinical outcome – age-related disease.

Aging is a dynamic process, in which entropy begins to gain as maintenance processes become gradually down-regulated.

In subsequent posts, we will explore the detailed mathematics of this change, reviewing the formula and the primary variables, letting us see the remarkable results that occur in terms of denatured molecules and cellular dysfunction. For now, however, let’s look at a few specific clinical examples in human aging, all of which we’ll return to in later posts, when we consider age-related diseases in great detail.

In human skin, between cells, we see changes in collagen and elastin (among dozens of other proteins) as we age. Many people mistakenly assume that these changes are a simple, static accumulation of damage over a lifetime, but these changes are anything but static. These molecules are in dynamic equilibrium, in which the molecules (and their complex structures) are constantly being produced (anabolism) and broken down (catabolism). The overall rate of recycling (the overall metabolism) is high in young skin, with the result that at any given time, most molecules are undamaged and functional (and relatively new). This rate slows with aging, however, with the result that molecules remain longer before being “recycled” and the percentage of damaged and dysfunctional molecules rises, slowly but inexorably. In old skin, molecules “sit around” too long before being recycled. Old skin isn’t old because of damage, but because the rate of maintenance becomes slower and slower. Naïve cosmetic attempts to “replace” skin collagen, elastin, moisture, or other molecules fail because they are transient interventions. By analogy, these cosmetic interventions would be like – in the case of our old, dirty office building – suggesting that we will send in one person, one night, to clean one window pane. Even if you notice a small, transient improvement, the problem isn’t resolved by bringing in one person for a single visit, it requires that we resume having the entire cleaning crew come in every night. Intervening in skin aging is not a matter of providing a few molecules, but of increasing the rate of turnover of all the molecules.

The same problem occurs in aging bones. The problem that lies at the heart of osteoporosis is not “low calcium”, but the rate at which we turnover our bony matrix. Looking solely at calcium as one example, osteoporosis not a static problem (add calcium), but a dynamic problem (increase the rate of calcium turnover). Moving our attention from minerals to cells, young bone is constantly being taken apart (by osteoclasts) and rebuilt (by osteoblasts). The result is continual remodeling (recycling) and repair. Bone turnover is a continual process that slows with age. Young fractures heal quickly and thoroughly. In old bone, however, the rate of remodeling falls steadily, and rebuilding falls slightly behind. The result is that we have decreased matrix, decreased mineralization, decreased bone mass, and an increasing risk of fractures. The fundamental problem underlying osteoporosis is not “a loss of bone mineral density”, but an inability to maintain bony replacement. It’s not the calcium or the phosphorous, but the osteocytes themselves. Loss of bone mineralization is a symptom, not the cause of osteoporosis.

A more tragic and more fatal example is Alzheimer’s disease. Until relatively recently, the leading pathological target was beta amyloid, a molecule which (like tau proteins and other candidates) shows increasing damage and denaturation (plaques in the case of amyloid) in older patients, especially in patients with Alzheimer’s disease. Again, however, amyloid is not a static molecule that is produced, sits around, and slowly denatures over a lifetime. Amyloid is continually produced and continually broken down, but the rate of recycling falls as we age. The result is that the percentage of damaged amyloid (plaque) rises with age, solely because the rate of turnover is slowing down. As we will see, the cells that bind, internalize, and breakdown this molecule become slower as we age. To address Alzheimer’s, we don’t need to remove amyloid or prevent its production, we need to increase the rate of turnover. Beta amyloid plaques are a symptom, not the cause of Alzheimer’s disease.

Wherever we look — an aging cell, an aging tissue, or an aging organism – we see that aging is not a static, linear loss of function due to entropy. Rather, aging is a dynamic process in which the rate of recycling – whether of intracellular enzymes, extracellular proteins, aging cells, or aging tissues – becomes slower as cells senesce. Aging is a programmed failure of maintenance at all biological levels. This is equally true of DNA repair, mitochondrial function, lipid membranes, proteins, and everything else we can measure in an aging system.

We’ve had a glimpse at the core of aging. Let’s explore an overview of how changes in gene expression translate into cell dysfunction, tissue failure, clinical disease, and aging itself.

Next time: Aging, the Overview

February 13, 2018

Aging and Disease: 1.2 – Aging, What We Have to Explain

Our understanding is limited by our vision.

If we look locally, our understanding is merely local; if we look globally, our understanding becomes more global; and if we look at our entire universe, then our understanding will be universal. When we attempt to understand our world, we often start with what we know best: our own, local, provincial view of the world around us, and this limits our understanding, particularly of the wider world beyond our local horizon.

Trying to explain the shape of our world, I look at the ground around me and – perhaps not surprisingly – conclude that the world is probably flat. After all, it looks flat locally. Trying to understand the heavens, I look up at the sky around me and – perhaps not surprisingly – conclude that the sun circles the earth. After all, the sun appears to circle over me locally. Trying to understand our physical reality, I look at everyday objects and – perhaps not surprisingly – conclude that “classical physics” accounts for my universe. After all, classical physics accounts for typical objects that are around me locally. As long as we merely look around, look up, and look at quotidian objects, these explanations appear sufficient.

But it is only when we look beyond our purely local neighborhood – when we move beyond our provincial viewpoint, when we give up our simple preconceptions – that can we begin to understand reality. Taking a broader view, we discover that the Earth is round, that the sun is the center of our local star system, and that quantum and relativity physics are a minimum starting point in trying to account for our physical universe.

To truly understand requires that we step back from our parochial, day-to-day, common way of seeing world and open our minds to a much wider view of reality. We need to look at the broader view, the larger universe, the unexpected, the uncommon, or in the case of modern physics, the extremely small and the extremely fast. Time, mass, energy, and other concepts may become oddly elusive and surprisingly complicated, but our new understanding, once achieved, is a lot closer to reality than the simple ideas we get from restricting our vision to the mere commonplace of Newtonian physics. This is true of for branch of science, and for human knowledge generally.

The wider we cast our intellectual nets, the more accurately we understand our world.

To understand aging demands a wide net. If our knowledge of aging is restricted to watching our friends and neighbors age, then our resulting view of aging is necessarily naïve and charmingly unrealistic. If we expand our horizons slightly, to include dogs, cats, livestock, and other mammals, then we have a marginally better view of aging. But even if we realize that different species age at different rates, our understanding is only marginally less naive. To truly understand aging, we need to look at all of biology. We need to look at all species (not just common mammals), all diseases (e.g., the progerias and age-related diseases in all animals), all types of organisms (e.g., multicellular and unicellular organims, since some multicellular organisms don’t age and some unicellular organisms do age), all types of cell within organisms (since somatic cells age, germ cells don’t, and stem cells appear to lie in between the two extremes), and all the cellular components of cells. In short, to understand aging – both what aging is and what aging isn’t – we need to look at all life, all cells, and all biological processes.

Only then, can we begin understand aging.

To open our minds and examine the entire spectrum of aging – so that we can begin to understand what aging is and how to frame a consistent concept of “aging” in the first place – let’s contrast the small sample we would examine in the narrowest, common view of aging with the huge set of biological phenomena we must examine if we want to gain comprehensive and accurate view of aging, a view that allows us to truly understand aging.

The narrow view, the most common stance in considering aging, examines aging as we encounter it in normal humans (such as people we know or people we see in the media) and in normal animals (generally pets, such as dogs and cats, and for some people, domesticated animals, such as horses, cattle, pigs, goats, etc.). This narrow view leaves out almost all species found on our planet. This sample is insufficient to make any accurate statements about the aging process, with the result that most people believe that “everything ages”, “aging is just wear and tear”, and “nothing can be done about aging”. Given the narrow set of data, none of these conclusions are surpring, but then it’s equally unsurprising that all of these conclusion are mistaken.

A broad view has a lot more to take into consideration (see Figure 1), which is (admittedly) an awful lot of work. The categories that we need to include may help us see how broad an accurate and comprehensive view has to be. We need to examine and compare aging:

  1. Among all different organisms,
  2. Within each type of organism,
  3. Among all different cell types, and
  4. Within each type of cell.

 

Lets look at these categories in a bit more detail.

When we look at different organisms, we can’t stop at humans (or even just mammals). We have to account for aging (and non-aging) in all multicellular organisms, including plants, lobsters, hydra, naked rats, bats, and everything else. And not only do we need to look at all multicellular organisms, we also need to account for aging (and non-aging) in all unicellular organisms, including bacteria, yeast, amoebae, and everything else. In short, we need to consider every species.

When we look within organisms, we need to account for all age-related diseases (and any lack of age-related diseases or age-related changes) within organisms. Diseases will include all human (a species that is only one tiny example, but that happens to be dear to all of us) age-related diseases, such as Alzheimer’s disease and all the other CNS age-related diseases, arterial aging (including coronary artery disease, strokes, aneurysms, peripheral vascular disease, cogestive heart failure, etc.), ostoarthritis, osteoporosis, immune system aging, skin aging, renal aging, etc. But we can’t stop there by any means. In addition to age-related diseases within an organism, we need to look at aging changes (and non-aging) whether they are seen as diseaeses or not, for example graying hair, wrinkles, endocrine changes, myastenia, and hundreds of other systemic changes in the aging organism.

When we look at different cells, we need to account for the fact that some cells (e.g., the germ cell lines, including ova and sperm) within multicellular organisms don’t age, while other cells in those same organims (e.g., most somatic cells) do age, and some cells (e.g., stem cells) appear to be intermediate between germ and somatic cells in their aging changes.

When we look within cells, we need to account for a wild assortment of age-related changes in the cells that age, while accounting for the fact that other cells may show no such changes, even in the same species and the same organism. In cells that age – cells that senesce – we need to account for telomere shortening, changes in gene expression, methylation (and other epigenetic changes), a decline in DNA repair (including all four “families” of repair enzymes), mitochondrial changes (including the efficacy of aerobic metabolism enzymes deriving from the nucleus, leakier mitochondrial lipid membranes, increases in ROS production per unit of ATP, etc.), decreased turnover of proteins (enzymatic, structural, and other proteins), decreased turnover of other intracellular and extracellular molecules (lipids, sugars, proteins, and mixed types of molecules, such as glycoproteins, etc.), increased accumulation of denatured molecules, etc. The list is almost innumerable and still growing annually.

If we are truly to understand aging, we cannot look merely at aging humans and a few aging mammals, then close our minds and wave our hands about “wear and tear”. If we are to understand aging accurately and with sophistication, then we must not only look at a broader picture, but the entire picture. In short, to understand aging, we must stand back all the way in both time and space, and look at all of biology.

To understand aging, we must understand life.

February 7, 2018

Aging and Disease: 1.1 – Aging, What it Isn’t

Filed under: Aging diseases,Alzheimer's disease,mitochondria — Tags: , , , — webmaster @ 9:29 am

It ain’t what you don’t know that gets you into trouble. It’s what you know for sure that just ain’t so.

– Mark Twain

Twain was right, particularly when it comes to the aging process: there is a lot we think we “know for sure that just ain’t so”. For example, most people (without even thinking about it and with a fair amount of naïve hand-waving) assume that all organisms age and equate aging with entropy. In other words, they think that “aging is just wear-and-tear”. We assume that aging “just happens” and that nothing can be done about it. After all, we all get old, things fall apart, things rust, everything wears out, so what can you expect? But as with Twain’s remark, the trouble is that we are quite sure of ourselves and we what we think is completely obvious, turns out to be completely wrong. We are content to gloss over our faulty assumptions and move to faulty conclusions. It’s bad logic, bad science, and a bad way to intervene in the diseases of aging. Without thinking about it, we conclude that aging is as simple as our preconceptions, which turn out to be erroneous.

Aging isn’t simple and our preconceptions are wrong.

As with most concepts that we don’t examine meticulously, aging is a lot more complex than we realize. Aging isn’t just entropy, it isn’t just wear-and-tear, and it isn’t many things that people blithely believe it to be. Let’s look at a few examples that make us back up and reconsider how aging works. Let’s start with your cells, and then your mitochondria.

We could take any cell in your body, for example a skin cell on the back of your hand. How old is that skin cells? Since we shed perhaps 50 million skin cells every day, there’s a good chance that the cell we are thinking about is only a day or so old, or at least a day or so since the last cell division. But that last division was from a “mother” cell that was there before the cell division resulted in two “daughter” cells. So perhaps our skin cell, counting the age of the “mother” cell is a week or so old? But that “mother” cell, in turn, derived from a dividing cell that was there several weeks ago, backwards ad infinitum to the first cells that formed your body. In fact, every cell in your body is certainly as the whole body, so perhaps that skin cell is a few decades old. You might say that the skin cell has the same age that you see on your driver’s license. Except that your entire body is the result of a cell (ova) from your mother and a cell (sperm) from your father, and each of those cells was already a few decades old (or however old your parents were) when the sperm and ovum became “you” when they joined at fertilization. But, of course, your parent’s germ cells came from their parents, whose germ cells came from their parents, and we can trace that lineage of germ cells back to… Well, all the way back to the origin of life on Earth. So in a very real, very strictly accurate biological sense, every cell in your body is 3.5 billion years old.

But if we assume that aging is just entropy, then we have explain why that line of germ cells (that resulted in your entire body) didn’t undergo any entropy (i.e., didn’t age) for 3.5 billion years and yet your somatic cells are now undergoing entropy (i.e., aging) in your body and have been aging since you were born. Why do somatic cells suffer from entropy, if germ cells don’t? Does entropy only work in certain cells and not in others? Apparently so. And if that’s true, then we can’t just wave our hands and invoke entropy as the entire explanation, can we? We have to explain something more subtle and complicated: why entropy results in aging in some cases (the somatic cells in your body) but not in other cases (the line of 3.5 billion year-old germ cells that led up to you having a body in the first place). How interesting. So much for just invoking the concept of entropy and walking away satisfied.

Entropy almost certainly plays a key role in aging, but we can’t simply leave it at that. We need to think a bit harder. Sometimes entropy wins (your body and most of its cells age in a matter of decades) and sometimes entropy doesn’t appear to win at all (your germ cell line didn’t age for 3.5 billion years). Why sometimes and not other times?

One way that some people have tried to explain this is to invoke mitochondrial damage, but an almost identical problem surfaces in the case of mitochondrial entropy. Given the prevalence of aging explanations based on free radical theory (reactive oxygen species, etc.), mitochondrial dysfunction is an obvious suspect for an explanation of aging. We know that older mitochondria make more free radicals, leak more, and those free radicals aren’t scavenged as well, so perhaps all of aging is a mitochondrial problem? Perhaps entropy simply causes mitochondrial damage and that’s why we age. Perhaps entropy works by aging our mitchondria, right?

Except that mitochondrial entropy can’t explain aging either.

If aging were the result of “aging” mitochondria, damaged by entropy (high internal mitochondrial temperature, free radicals, loose protons and electrons, and a general accumulation of mitochondrial damage over time), then we are still left with an embarrassing conundrum. To understand the problem, let’s ask a simple question: how old are your mitochondria? Mitochondria divide fairly constantly, depending on the cell and its energy demands. In some cells (such as liver cells), with high energy demands, mitochondria are dividing all the time, in others with low energy demands, mitochondria divide much less frequently. On the other hand, since every mitochondria in every cell in your body derived from the mitochondria that were present in you as a fertilized zygote, we might reasonably say that your mitochondria are all the same age as your body, i.e., all of your mitochondria are a few decades old, and as time goes by, your mitochondria simply wear out, right?

Well, no.

Every mitochondria that you had as a fertilized zygote was derived from your mother’s ovum, which supplied all of your original mitochondria, so your mitochondria are as old as you are. Well, as old as you are plus as old as your mother was when you were conceieved. Oh, and plus the age of her mother and her mother and so on, ad infinitum back as far as the very first mitochondrial inclusion in the very first eukaryotes (or so). So every mitochondria in your body is about 1.5 billion years old and they’re doing pretty well for their age. But that means that if we want to blame aging entirely on mitochondrial dysfunction (and mitochondria surely play a major role in aging), we are still left with a conundrum. We have to explain why all of those dividing mitochondria (which were at least 1.5 billion years old) hadn’t aged for 1.5 billion years, and now all of your mitochondria are having significant problems after only a few decades. Why do your mitochondria suddenly start aging when they were doing so well for the last 1.5 billion years? The problem is that your mitochondria really do showing aging changes, but the mitochondra from your mother clearly didn’t until you came along. Worse yet, we have to explain both of these effects (aging and non-aging) simultaneously if we want to explain aging at all. How can we do both? We can’t simply wave our hands (again) and blame entropy unless we can simultanously explain why entropy works sometimes and in some cells (liver cells, for example), but entropy doesn’t work at other times and in other cells (the mitochondria in the germ cell line, for example). Again, why sometimes and not other times?

If entropy were an entirely sufficient explanation, they why does entropy age some cells (and some mitochondria) and not other cells (and other mitochondria)? If we restrict our explanation of aging solely to entropy, then we have a problem. We can’t just say that entropy does cause aging (because sometimes it doesn’t) nor can we say that entropy doesn’t cause aging (because sometimes it does). Entropy plays a role in aging, but not always.Why? What we have to do, if we really want to explain aging, is explain why entropy varies in biological systems. Sometimes entropy wins, sometimes it doesn’t.

Our preconception about entropy – wear-and-tear – as the sole cause for aging is a common misconception and not always noticed. It creates a subtle, but pervasive bias in our thinking about biolgy and aging. Even once we realize that entropy can’t explain all of cell or mitochondrial aging, we still find entropy creeping back into our thinking, but disguised under a different form. We tend to think of Alzheimer’s, for example, as what happens when beta amyloid, tau proteins, or mitochondria undergo entropy and cause neuronal death and clinical disease. We think of skin aging as what happens when collagen and elastin undergo entropy and cause wrinkles and aging skin. Some people blame aging on entropy of the endocrine system, concluding that all of aging comes about because of entropy in a gland or hormonal tissue. The fact that aging can occur in some organisms without endocrine systems (and that replacing hormones doesn’t stop aging) doesn’t change their misconception. But whatever guise it hides under, entropy by itself, cannot explain aging or age-related disease. There are too many odd things to explain, too many exceptions, too many cases where entropy explains one finding, but not another finding. Entropy can explain this cell, but not that cell. Entropy can explain this mitochondria, but not that mitochondria. Entropy simply can’t explain aging in toto. We have to dig a bit further.

Entropy, as an explanation of aging, only works if we close our eyes and ignore most of biology. As we’ll see in the next blog, there is a lot of biology that needs to be accounted for if we are going to explain how aging works. However we try to shoehorn entropy into being the entire explanation, aging cannot be entropy alone. As we will see, entropy does play a crucial role, but we cannot simply cite entropy, wave our hands, and say we understand aging. Aging is not entropy: aging is entropy plus something else, something subtle and complex, but something crucial to a complete understanding of aging.

As we will soon see, aging is entropy in the face of failing maintenance.

 

Next: 1.2 – Aging, What We Need to Explain

February 1, 2018

Aging and Disease: 1.0 – Aging, Our Purpose, Our Perspective:

Aging is poorly understood, While the process seems obvious, the reality is far more complex than we realize. In this series of blogs I will explain how aging works and how aging results in disease. In passing, I will touch upon why aging occurs and will culminate in an explanation of the most effect single point of intervention, both clinically and financially. We will likewise explore the techniques, costs, and hurdles in taking such intervention into common clinical use in the next few years.

The approach will be magesterial, rather than academic. I do not mean to preclude differences of opinion, but my intent is not to argue. I will explain how aging works, rather than engage in theoretical disputes. Many of the current academic disputes regarding aging are predicated on unexamined assumptions and flawed premises, resulting in flawed conclusions. Rather than argue about the conclusions; I will start from basics, highlight common pitfalls in our assumptions and premises, then proceed to show how aging and age-related diseases occur.

Since this is not and is not intended to be an “Academic” series (capitalization is intentional), I will aim at the educated non-specialist and will usually omit references, in order to make engagement easier for all of us as the series proceeds. If any of you would like references, more than 4,200 academic references are available in my medical textbook on this topic, Cells, Aging, and Human Disease (Oxford University Press, 2004). For those of you with a deep intellectual exploration of this topic, I recommend you read my textbook. Ironically, my academic textboo is still largely up-to-date with regard to the patholgy and to the aging process in general, if not so with regard to current interventional techniques for human clinical use.

The first book and medical articles that explained aging were published two decades ago, including Reversing Human Aging (1996) and the first two articles in the medical literature (both in JAMA, in 1997 and 1998). There are no earlier or more complete explanations of how aging works, nor of the potential for effective clinical intervention in aging and age-related disease. Since then, I have published additional articles and books that explain the aging process and potentially effective clinical interventions. The most recent, and most readable of these (The Telomerase Revolution, 2015) is meant for the lay reader and is available in 7 languages and 10 global editions. For those of you who want to know more, I encourage you to explore this book, which was praisde in both The London Times and the Wall Street Journal.

Finally, the focus will be the theory of aging; a theory that is valid, accurate, consistant with known data, predictively valid, and testable. This will not be a narrow discussion of the “telomere theory of aging”, which is a misnomer, but a detailed discussion of how aging works and what can be done about it using current techniques. A factual and accurate explanation of aging relies on telomeres, but also must addrss mechanisms of genes and genetics, gene expression changes and epigenetics, cell senescence and changes in cell function, mitochondrial changes and ROS, molecular turnover and recycling, DNA damage and cancer, “bystander” cells and “direct aging”, tissue pathology and human disease, and – above all – how we may intervene to alleviate and prevent such disease. The proof is not “in the pudding”, but in the ability to save lifes, prevent tragedy, and improve health.

The proof is in human lives.

This theory of aging has several key features. It is the only theory that accounts for all of the current biological and medical data. It is internally consistent. It is predictively valid: for the past 20 years, it has predicted both academic research results and the clinical outcomes of pharmaceutical trials accurately and reliably in every case. These predictions include the results of monoclonal antibody trials in Alzheimer’s disease, as well as other Alzheimer’s clinical trials, other clinical trials for age-related disease, and animal research (in vivo and in vitro). Perhaps the most fundamental feature of this theroy of aging is that it is an actual theory, i.e., testable and falsiable. A “theory” that cannot be disproven isn’t science, but philosophy. Many of what we think of as “theories of aging” cannot meet this criteria. If they cannot be disproven, they are not science, but mere will-o’-the-wisps.

If the theory of aging has a single name – other than the “telomere theory of aging” — it might be the epigenetic theory of aging. Despite misconceptions and misunderstandings about what it says (both of which I will try to remedy here), the epigenetic theory of aging has stood the test of time for the past two decades. It remains the only rational explanation of the aging process, while remaining consistent, comprehensive, and predictively valid. When it predicted failure of an intervention, the intervention has failed. When it predicted an effective intervention, the intervention has proven effective. Whether it’s the telomere theory of aging or the epigenetic theory of aging, in this series, we will proceed to get our conceptual hands dirty and look carefully at what happens when aging occurs, why it happens, where it happens, and what can be done about it. We’re going to go at this step-by-step, going into detail, and showing why we can intervene in both the basic aging process and human age-related diseases.

I doubt you’ll be disappointed.

 

Next blog:       1.1 – Aging, What is Isn’t

Powered by WordPress