Michael Fossel Michael is President of Telocyte

July 31, 2018

3.0 Aging Disease

Aging causes disease.

To many people, the relationship is even closer: aging is a disease. The latter view is controversial. Most biologists and physicians would view aging as a “natural process” and contend that “normal aging” is independent of disease. Aging, in this view is not a disease, although it certainly causes disease. They often distinguish between, for example, “normal” brain aging and abnormal brain aging, such as Alzheimer’s, Parkinson’s, Frontotemporal dementia, vascular dementia, and other dementias.

The academic position that “aging is not a disease” is understandable, but ironically inconsistent with normal human behavior. The same academics who argue that “aging is not a disease” are seen to dye their gray hair, undergo Botox treatments or plastic surgery for wrinkles, buy “anti-aging” skin creams, and do everything they can to avoid aging… Judging from behavior (as opposed to academic argument), humans act as though aging were a disease. We go to a great deal of trouble to avoid a “natural process”. So is aging a disease? There is no objective answer. We argue that aging is not a disease, while acting as though it is.

Nor does the argument that “aging is a natural process” validate the position. Aging may be quite natural, but we avidly avoid many “natural processes” because of the risk of death, pain, disability, or fear. Labor pains and neonatal mortality, infections and epidemics, starvation and malnutrition, broken bones and head injuries, and almost everything that modern medicine works to prevent, cure, or treat is a natural process. Simply because a process is natural does not mean that we accept, condone, or value the outcome of such natural processes. Polio infection, smallpox, and tetanus are all natural processes, but these are also diseases, diseases that we put a lot of global effort into eradicating or preventing.

To argue that infection, trauma, genetic disease, or cancer are natural processes is rational, but misses the point and merely results in clinical nonsense. Yes, these are all natural, but are they desirable? No. Precisely the same can be said of both aging and age-related diseases. Natural yes, desirable no.

Arguments about whether or not aging is a disease lose contact with our daily reality. Rather than dispute semantics consider the practical questions: can we do anything about aging and age-related diseases? Most people find both aging and age-related disease to be uncomfortable and worth avoiding – if possible. One of my 94 year-old patients was asked if she would take a pill to reverse aging. “No, I’d rather let nature take it’s course”. I asked about the scar on her sternum: “Quadruple bypass surgery.” I inquired about her swollen knuckles: “Arthritis and ibuprofen isn’t helping any more.” Why had she come to the hospital? “I have pneumonia and I need to be admitted to the… Oh, wait, I see what you’re driving at. I’d take the pill!” In the abstract aging is fine, but the reality becomes a different matter.

If we are to intervene in age-related disease, we need to intervene in the aging process itself. Beneath every age-related disease lies a more fundamental “disease”, that of aging. It is the very genetic and cellular processes that we have addressed in our previous blog posts that trigger age-related diseases, regardless of cell-type, tissue, or organ. Whether we are looking at dementia, arterial disease, joint changes, or weakening bone, in every case we can trace the clinical disease to the changes occurring deep within cells. The gradual changes in epigenetic pattern and the consequent changes in cell functions underlie all age-related problems.

The underlying, common problem in age-related disease is the shortening of telomeres with consequent gradual, but pervasive changes in the pattern of gene expression. These epigenetic changes are reflected in a significant degradation of cell function, particularly in the rate of turnover of molecular pools (internally and externally), the slowing of DNA repair, the decrease in mitochondrial efficiency, and the increase in the rate of molecular damage. In addition, cell aging impinges upon the function of neighboring cells in each tissue, even if such neighboring cells are not as far along on the cell aging spectrum. Although the underlying problem is the same (telomere shortening, epigenetic changes, cell dysfunction), the outcome varies between tissues. In the brain, the aging of glial cells results in neuronal dysfunction and is expressed clinically as one of several dementias. In the case of vascular endothelial cells, the outcome is arteriosclerotic pathology, and is expressed as myocardial infarction, stroke, aneurysm, peripheral vascular disease, heart failure, and other syndromes. In joints, we see osteoarthritis. In bone, we see osteoporosis. No organ is spared. Skin, lungs, kidneys, the immune system, the endocrine organs – all tissues and organs demonstrate age-related changes, loss of function, and diseases peculiar to themselves.

In every case, however, age-related diseases, regardless of cell type, tissue, or organ, share the same etiology: cell senescence orchestrated by shifts in telomere length. In the next several posts, we will explore the diseases of aging, then move on to interventions to prevent and cure the diseases of aging.

Next time: 3.1 Aging Disease, Cancer

July 16, 2018

Aging and Disease: 2.9 Cell Senescence And Tissue Aging

The human body represents a “system” in the engineering sense: all parts (cells, tissues, organs) are interdependent. To understand how the body functions (and how it ages), we may appropriately study individual cells, but we must also study the interactions between cells. We may start by looking at small communities of cells (local, homogenous tissues), but we must then move onwards, looking at how cells, tissues, and organs interact. To give an example, in studying the blood vessels, we can study cells that make up the inner vessel wall (e.g., vascular endothelial cells), we can study other cells in the local tissue (both endothelial and subendothelial cells), or we can enlarge our view to look at how these cells affect more distant tissues (e.g.,the myocardium). We might start by ignoring the interactions with other cells, but if we want to understand most age-related diseases, then we must consider the more distant effects as well.

Initially, we will focus on the cells within a typical tissue. In fact, we will start by simplifying so far as to pretend that a tissue has only one type of cell: an unlikely example in actual practice, but useful as a didactic concept, if only by allowing us to understand what actually happens to a tissue as its cells age.

One overarching concept requires emphasis: failing cells result in failing tissues.

Groups of cells do not fail because of some enigmatic gestalt phenomenon, groups of cells fail because changes in individual cells have effects upon the cells around them, as well as more distant tissues. No cell operates independently, even within a “homogenous” tissue. When cells fail, they not only become dysfunctional by themselves, but they actively interfere with the function of other neighboring cells. To use an analogy, if we have a group of people working together in an organization, then aging is a process in which the organization fails not solely because some individuals refuse to do their job, but because those individuals actively interfere with others around them. To take this analogy back into the biological world, age-related disease occurs because the aging of any particular cell can have multiple effects:

  1. Aging cells no longer do their jobs within the tissue.
  2. Aging cells directly interfere with function of other cells within the tissue.
  3. Aging cells indirectly interfere with the function of more distant tissues.

You might think of a single aging cell as a “sin of omission”, in that the cell no longer performs its normal function; however any aging cell is also a “sin of commission” because it actively interferes with the normal function of other cells as well. To give an example, aging glial cells become dysfunctional in their ability to recycle amyloid molecules, but they also excrete proinflammatory cytokines (and other factors) and thereby interfere with the normal function of surrounding cells that are not senescent. This latter process is generically referred to as SASP (“senescence associated secretory phenotype”) and is typical of most aging tissues.

Aging is not a uniform process, either between tissues or within tissues. In any tissue, not all cells are the same functional “age”. Even in a fairly homogenous tissue, cells age at different rates, have different telomere lengths, and (as a result) differing patterns of senescent gene expression. If we were to measure telomere lengths in aging tissues, we’d find that some tissues have a narrow spread of telomere lengths and others tissues have a large spread, but none of them have all the same telomere lengths. The cells within a tissue have different rates of aging (and different trajectories as well). To see this graphically, see figure 2.9a (adapted from my textbook, Cells, Aging, and Human Disease, Oxford University Press, 2004).

Notice that there are two sorts of variability here: the degree to which any individual cell is “senescent” and the timing of that senescence. As we have noted already, senescence is not an all-or-nothing event, but rather it is a spectrum of dysfunction, due to relative telomere loss and the degree to which the pattern of gene expression has changed. Moreover, some cells move toward senescence quickly, some more slowly, and some with varying trajectories, as shown in figure 2.9a. The result is that if we look at senescence in any given tissue, we see a range of dysfunction. It is not true that all of the cells suddenly flip from normal to senescent, nor is it true that some cells suddenly flip from normal to senescent. In reality, each cell varies in both its degree of senescence and in the rate (or trajectory) of that gradual change. To see this graphically, see figure 2.9b (also adapted from Cells, Aging, and Human Disease).

Cells are part of an extremely complex biological community. Aging cells not only fail to contribute, but can actively and directly impede other cells in that local tissue, as well as having indirect effects in distant tissues. If for example, we look at vascular endothelial cells in the coronary arteries, as some of these cells become senescent, they not only fail to act as adequate “linings” to the artery, they also trigger inflammatory changes in the underlying (subendothelial) cells, Moreover, this local pathology within the coronary artery can result in decreased blood flow (chronically as the vessel narrows and acutely if a thrombus breaks free and “corks” more distant vessels, causing ischemia). In the community of cells that comprise the heart and its coronary arteries, endothelial cell senescence results in a dysfunctional vessel surface (local cells), an atherosclerotic local mass within the vessel wall (the neighboring cells), and, for example, a myocardial infarction in cardiac muscle cells (the more distant cells, that are mere “innocent bystanders”). Cells may be senesce locally, but their senesce may have a dramatic impact on distant cells and the outcome may be fatal for the entire organism. No cell is independent and this is all the more true of age-related disease.

Later in this set of blogs, we will make the distinction between direct and indirect pathology. Direct pathology occurs when one type of senescing cell (for example, the chondrocytes of your knee) directly result in age-related disease in that same tissue (for example, osteoarthritis in that same knee). Indirect pathology occurs when one type of senescing cell (for example, the endothelial cells in your coronary arteries) indirectly result in age-related disease in a different tissue (for example, myocardial infarction when the artery fails).Before exploring these more typical forms of aging and age-related disease however, we will look at another, related type of disease that, while still related to cell senescence and aging, has characteristics all its own: cancer.

First, however, let’s consider age-related disease as a whole.

 

Next Time: 3.0 Aging Disease

March 27, 2018

Aging and Disease: 2.1 – Cell senescence, Why Cells Divide

Why do some people age faster than others? We’ve all seen people – high school reunions come to mind – who have the same chronological age, but different biological ages: with the same “age”, one person looks ten years older (or younger) than another. If aging is related to cell senescence and cell senescence depends on cell division, then why do some people’s cells divide more than other people’s cells? Why don’t people age at the same rate?

Why does he look old, but she doesn’t, even at the same “age”?

And why do our own organs and tissues age at different rates? We’ve all seen people whose skin looks old, but they have no evidence of osteoarthritis or dementia; equally, we’ve seen other people with terrible osteoarthritis, but no heart disease or dementia. Not only do we age at different rates when we compare different people, but our tissues sometimes age at different rates even within the same person. If aging is related to cell senescence and cell senescence depends on cell division, then why do people vary internally, having some cells (in one tissue) divide more frequently than other cells (in another tissue)? Why don’t all of our tissues age in parallel?

Why does he have bad knees, but she has a bad heart, even at the same “age”?

The easy – and naïve – answer is to say the magic word “genes” and nod knowingly.

The real – and more complex – answer demands a lot more thought. It requires that we reexamine both the data and our assumptions. It requires, in a word, that we think about what’s really going on. Part of this complex answer begins easily. We notice that people who were exposed to too much sun (and too many sun burns), for example, have skin that ages faster than people who avoided sun damage to their skin, and this is true even with identical genes, as in identical twins. We have discussed the fact that aging is not simple a matter of genes, but it’s a balance between damage and maintenance. “It’s not the years, it’s the miles.” Indeed, the degree to which we pile damage onto our tissues shows a good correlation to how fast those tissues show aging and age-related disease. Most of us know this without really thinking about it. For example, we automatically assume that smoking causes COPD, “bad” diets increase your risk of heart attacks, and so forth. These assumptions are now part of our cultural baggage and (true or not) have attained the status of medical wisdom. In fact, to a large extent these are supported by a fair amount of good evidence, although it’s always a bit more complex than the current culturally accepted facts would have you believe. For example, it may or may not (depending on the decade we’re talking about) be accepted that dietary cholesterol has a direct impact on the cholesterol deposits in your coronary arteries, but the evidence that dietary intake (unspecified for the moment, but not just cholesterol) has a long-term impact on coronary artery disease is fairly good.

In short, your behavior (diet, exercise, stress, etc.) can accelerate or decelerate not only your overall rate of aging, but the rate of aging (and age-related disease) in a number of specific tissues. To give a few more examples, people engaged in high-impact activities (think basketball) have a higher incidence of osteoarthritis of the knees than do people engaged in low-impact activities (think yoga). People who get repeated head injuries (think pugilists and American football players) have a higher incidence of Alzheimer’s and other dementias. In both of these cases – osteoarthritis and dementia – those at high risk not only have a higher incidence of the age-related disease in old age, but they get the specific age-related disease at a younger age than do those at lower risk. They are both more likely to get the disease and more likely to get it earlier. What this tells us is not surprising: aging is related to what you do behaviorally, not just who you are genetically. In short, it’s not just your genes.

Genes do, of course, play a fundamental role but they do it in complex relationship with the damage that accrues over a lifetime. If you really want to avoid osteoarthritis, you not only want to have parents who never had osteoarthritis, but you want to avoid repetitive high-impacts to your joints. If you really want to avoid dementia, you not only want a double allele of APOE-2 (instead of two APOE-4 alleles), but you want to avoid boxing or playing football. But then if these sorts of behavior cause age-related disease, and cell senescence underlies age-related disease, what is the relationship?

The key relationship is the rate of cell division. If your cells are forced to divide more frequently, you force them to senesce faster. If, for example, you damage your knees (forcing your chondrocytes to divide and replace the damaged cells) then you will accelerate aging in your knees (as those cells divide, lose telomeres, and change gene expression). The more you damage your knee joints, the more rapidly your chondrocytes divide, and the more rapidly you develop osteoarthritis. If you damage your head (forcing glial cells to divide and replace the damaged cells), then you will accelerate aging in your brain (as those cells divide, lose telomeres, and change gene expression). The more you damage your brain, the more rapidly your glial cells divide, and the more rapidly you develop dementia.

The details, the pathology, the reality of these age-related diseases are wildly more complex than this cursory review suggests, but the basic theme is valid. Given equivalent genes, people who engage in a lifestyle that increases cell turnover will increase their rate of aging. Likewise, your particular lifestyle may increase cell turnover preferentially in one organ or tissue and that will accelerate the rate at which that organ or tissue develops age-related disease.

Any cell in your body (in any tissue) has a baseline “rate of cell division” (i.e., rate of tissue aging). Skin cells, gastrointestinal lining cells, and hematopoietic stem cells divide frequently, while neurons, muscle cells, etc. divide very infrequently in the adult (an in some cases, not at all). Anything that accelerates cell division, accelerates aging. Anytime you increase the rate of damage to a tissue, you increase the rate of cell division (i.e., the rate of tissue aging) and the result is increased aging and increased age-related disease. The same is true between individuals. We each (based on our own genetics) have what you might think of as a “baseline rate of aging” for our body. If you take care of yourself, you still age inexorably, but relatively slowly. If you engage in a high-risk lifestyle, you will age not only inexorably, but relatively quickly.

Aging is caused by cell senescence and cell senescence is cause by cell division, but while you need your cells to divide in order to survive, the relative rate of cell division is, to an extent, controlled by your lifestyle. Cells divide because you’re alive, but the way you live has an impact on how fact those cells divide and how fast you age.

So, let’s answer our initial question. We have been making the case that aging occurs because cells divide, shortening telomeres, which changes gene expression, which results in dysfunctional cells, dysfunctional tissues, and tissue aging (and disease). This is true, but it begs the question of “if cell division causes aging, then what causes cell division?”

The answer is that cell division is both a natural result of being you (your genes, your personality, your culture, and the simple fact that you are alive and some of your cells MUST divide to keep you alive) and the result of what you do to yourself. You have a baseline rate of cell division (and hence aging). If you have a high-risk lifestyle, you age faster; if you have a low-risk lifestyle, you age a bit more slowly. You can increase or decrease your rate of aging – to a degree – depending on what you do. There is (so far) nothing you can do to STOP aging, but can certainly make it a bit slower, or a lot faster.

Next time: 2.2 Cell senescence, Telomeres

March 20, 2018

Aging and Disease: 2.0 – Cell senescence, Perspective

Most of us – when we think of cells at all – seldom appreciate that the idea of a “cell” is a modern idea, not quite two centuries old. One of the tenets of cell theory is that cells are the “basic unit of life”. This makes some sense but note that while the components of cells (mitochondria, for example) can’t live independently but can only survive as part of a cell, it’s also true that most cells don’t do very well independently either but can only survive as part of an organism. Nevertheless, and for good reason, cells are generally thought of at the building block of life, the unit out of which organisms are made. This sort of statement has exceptions (what about viruses?) and qualifications (some muscle “cells” tend to blur together), but overall, cells do function as the “basic unit of life”.

More importantly, most diseases operate at the cellular level or are most easily discussed in cellular terms. Want to understand the immune system? The focus is white blood cells. Want to understand heart attacks? The focus is the dying cardiac muscle cells. Want to understand Alzheimer’s? We tend to focus on dying neurons. In all these cases, other cells are not only involved, but are often the source of the pathology, but regardless of the complexities, qualifications, and exceptions, if you really want to understand a disease these days, you want to look at cells. You may be looking at an organ (such as the liver) or a tissue (such as the surface of a joint), but when push comes to shove, you need to get down into the cells to really understand how a disease works and what might be done about it.

Oddly enough, however, the idea of aging cells somehow never really took off until the middle of the last century. In fact, there was an overriding acceptance of the idea that cells did NOT age. Aging was (here, much hand waving occurred) something that happened between cells and not within them. Organisms certainly aged, while cells did not. This is not surprising when you think of the fact that all organisms derive from single (fertilized) cells that have a germ cell line going back to the origin of life, so while that cell line clearly hadn’t aged, you certainly aged. Voila! Cells don’t age, but you do. There was even a large body of (faulty) data showing that you could keep cells (in this case chicken heart muscle cells) alive and dividing “forever”.

In 1960, however, Len Hayflick pointed out that cells themselves age, and that this aging is related to the number of times the cells divides. Moreover, this rate of cell aging is specific to both species and cell type. While germ cell (think ova and sperm) don’t age, the normal “somatic cells” of an organism show cell aging. By the way, this aging had no relationship to the passage of time but was strictly controlled by the number of cell divisions. In other words, entropy and the passage of years was irrelevant. The only variable that mattered was cell division itself. Entropy only triumphed as cells divided and only in somatic cells. Len had no idea of how cells could count, although he termed this mechanism (whatever it was) the “replicometer” since it measured cell replications.

A decade later, Alexey Olovnikov figured out the mechanism. He pointed out that because of the way chromosomes replicated, every time you replicated a chromosome, you would lose a tiny piece at the end of the chromosome, the telomere. Clearly that wasn’t all there was to it or – since cells and chromosomes have been replicating for billions of years – there wouldn’t be any chromosomes (or life) left on the planet. There had to be something that could replace the missing piece, at least in some cells, such as the germ cell line. That something was telomerase. At least as importantly, however, Alexey pointed out that this was probably the mechanism of Len Hayflick’s “replicometer”: the number of cell divisions was measured in telomere loss.

As it turns out, Len (about cell divisions) and Alexey (about telomeres) were both right. The connection was finally shown in 1990 by Cal Harley and his colleagues, who found that telomere length exactly predicted cell aging and vice versa: if you knew one, you knew the other. At first, this was merely correlation, if a remarkably good one, but it didn’t take more than a few more years to show that telomere loss determined cell aging. Specifically, if you reset the length of the telomere, then you reset cell aging. If, for example, you reset the telomere length in human cells, then those “old” cells now looked and acted exactly like young cells. In short: you could reverse cell aging at will.

This prompted the first book (Reversing Human Aging, 1996) and the first articles in the medical literature (published in JAMA, 1997 & 1998) to suggest that not only did cell aging underlie and explain human aging, but that cell aging could be reversed, and that the clinical potential was unprecedented in the ability to cure and prevent age-related human disease. This was rapidly followed by a set of experiments showing that if you reextended telomeres in aged human cells, you could grow young, healthy human tissues in vitro, specifically in human skin, arterial tissue, and bone. The entire area was extensively reviewed in what is still the only medical textbook on this area (Cells, Aging, and Human Disease; Oxford University Press, 2004). Since then, there have been at least three peer-reviewed publications looking at the use of telomerase activators, each of which showed intriguing and significant (if not dramatic) improvements in many age-related biomarkers (e.g., immune response, insulin response, bone density, etc.).

In a landmark paper (Nature, 2011), DePinho and his group, then at Harvard, showed that telomerase activation in aged mice resulted in impressive (and unprecedented) improvements not only in biomarkers, but (to mention CNS-related findings alone) in brain weight, neural stem cells, and behavior. This was followed by an even more impressive result (EMBO Molecular Medicine, 2012) by Blasco and her group (at the CNIO in Madrid), who showed that the same results could be accomplished using gene therapy to deliver a telomerase gene to aged mice. This result was the more impressive because precisely the same approach can be used in human trials.

Exactly this technique is planned for human Alzheimer’s disease trials next year. But to get there, we need to understand not only the background history, but how cells themselves age, the results of cell aging, and why we can intervene.

Next time: 2.1 Cell senescence, why cells divide

 

March 15, 2018

Aging and Disease: 1.5 – Aging, Misconceptions

Misconceptions regarding the current model of aging are rampant and they tend to fall into one of several categories. These include Straw man arguments, unfamiliarity with how age-related human pathology occurs, simplistic views cell senescence, genes, and expression, or misguided approaches to measuring telomeres (usually in the wrong cells).

Straw man arguments

          The Earth can’t possibly be round, or you’d fall off the other side.

This sort of argument attacks a position by attacking the wrong target, then claiming victory. The approach is called a “straw man argument”. Rather than facing an actual opponent (or making a logical argument), you build a man out of straw (or offer up a faulty premise), attack it and beat it (or disprove the faulty premise), then claim that you have beaten your opponent (or proven your entire argument). Straw man arguments are safer and easier but they’re dishonest and they don’t lead to clinical progress.

Several centuries ago, some clerics argued that if Copernicus was right about the sun being the center of the solar system, then he must be denying the existence of God (the straw man) and the truth of the Bible (another straw man). Never mind the astronomical data: critics focused on the religious straw man. A century ago, some people argued that humans could never fly because humans are heavier than air. You couldn’t deny the straw man (we really are heavier than air), but it didn’t affect validity of flying machines. Even the Wright brothers would be shocked senseless by the weight of the modern commercial jet. History is replete with “disproof’s” that misrepresent or make wildly erroneous straw man arguments about new thoughts, new theories, and new technologies.

Straw man arguments do nothing but prevent progress.

The telomerase theory of aging has frequently been criticized using straw man arguments. The most common example is suggesting that telomere length (instead of change in length) is important to aging, then demolishing the straw man. Cellular aging – as marked by changes in gene expression – is not modulated by telomere length but is modulated by changes in telomere length. Telomere length per se is a straw man. The fact that some young mice have 150kbp telomeres (but a 2-year lifespan) while some young humans have 15kbp telomerase (but 80-year lifespans) is irrelevant: it’s a straw man. Cell aging is determined by the gradual changes in gene expression and these are determined by relative telomere loss, not by absolute telomere length. To say that some species have longer telomeres and shorter lifespans while other species have shorter telomeres and longer lifespans is interesting but misses the point. Telomere length (the straw man) has nothing to do with lifespan or cell aging. The key factor isn’t length, but the change in length of the telomeres and – more directly – how the changing length of telomeres changes the pattern of gene expression. To focus on telomere length creates a wild goose chase. The key feature is not the telomere (and certainly not the absolute telomere length), but the patterns of gene expression as modulated by the changes in telomere length over time.

Human pathology: which cells cause the disease?

A more egregious error occurs when the straw man is due to a stunning naiveté regarding age-related pathology. In this case the error lies in misunderstanding clinical medicine rather than in misunderstanding telomere biology. This type of straw man argument has surfaced repeatedly online, in articles, and (sadly) even in academic discussions. The two most typical (and most egregious) examples aim at heart disease and dementia. The most typical false statements are:

  1. Cell aging can’t explain heart disease, since heart cells don’t divide.
  2. Cell aging can’t explain dementia, since neurons don’t divide.

These statements, as is often the case, tell us far more about the critic than they tell us about the target of the criticism. In these two examples, we discover that the critics have no understanding of the clinical pathology underlying either heart disease or dementia. The two statements are not only straw man arguments but display an extraordinary lack of clinical knowledge. While it’s true that heart cells and neurons generally don’t divide, that fact has nothing to do with the actual disease process nor the role of cell aging.

Classical “heart” disease (i.e., myocardial infarction, angina, etc.) doesn’t begin in the heart muscle (whose cells rarely divide), but in the endothelial cells that line the coronary arteries (whose cells divide regularly). The observation that heart cells don’t divide is (more or less) accurate but has nothing to do with heart disease being caused by cell aging. Heart muscle cells are the innocent bystanders. The vascular endothelial cells are where the pathology begins. To blame heart disease on heart muscle cells is like blaming the murder victim rather than the murderer. Heart cells are the victim, not the perpetrator. We might have equally (and just as foolishly) said that “cholesterol can’t explain heart disease, since heart cells don’t accumulate cholesterol.” The latter is true, but it’s hardly relevant. Cholesterol’s role (like that of cell aging) lies in the vascular lining cells, not in the heart muscle cells. Whether we are talking about cell aging or cholesterol deposits, the heart cells are the innocent bystanders and it’s the coronary arteries that are the problem. Cell aging accurately explains everything we know of human “heart disease”, as well as age-related vascular disease generally (e.g., strokes, aneurysms, peripheral vascular disease, congestive heart failure, etc.). The straw man arguments are disingenuous and largely based on a willful (a woeful) ignorance of human age-related disease.

Much the same is true for dementia. Neurons don’t divide (much, if at all, in the adult human), but glial cells (such as microglia) both divide and have been implicated in the basic pathology that underlies Alzheimer’s and many other dementias. We know, for example, that Alzheimer’s patients have shorter telomeres than do age-matched patients without Alzheimer’s. In short, cell aging explains dementia logically and accurately, while the lack of neuronal cell division has nothing to do with the argument (or the disease). In this context, such Straw man arguments display the distressing naiveté of those using them.

Cell senescence, genes, and expression

Cell senescence is often regarded as all-or-nothing: a cell is either young or old, but never anything in-between. Over the past half century, this error has often resulted in people speaking past one another, never recognizing that they have different definitions of “cell senescence”. While it’s true that there is an endpoint (a senescent cell that is incapable of division or much else), short of that extreme, cell senescence remains a relative matter. This is not only seen in the physiology (how well does the cell function?) but in terms of gene expression. Like cell senescence, gene expression is not all-or-nothing. It’s true that a particular gene at a particular time is either being transcribed or not, but if we look at the rate of gene expression over any reasonable time duration (e.g., an hour, a day, or a week), we see that the rate of gene expression looks more like a continuum. You might say that it’s “analog” rather than “digital”. More importantly, that rate of gene expression can be seen to change not only over time, but as an integral part of cell senescence. In “older” cells, while we find that the genes and gene transcription process is perfectly normal (i.e., the same quality of genes and gene transcription as a “young” cell), we find that the rate of gene expression is now quite different. Putting it simply, the rate of gene expression slows down as a cell segues from a young cell to a senescent cell. Thinking of cell senescence and gene expression as all-or-nothing is a troublesome error but is not the only error when it comes to genes and aging.

Perhaps the most rampant error lies in thinking of “aging genes”. A century ago, it wasn’t unusual to hear people talk about genes for any number of things: intelligence, beauty, compassion, etc. While there are genes that play a role in these (and myriad other characteristics), the relationship between intelligence and genes has proven to be remarkably complex, requiring input from epigenetics, environment, diet, and other factors. Even if we restrict ourselves to genes alone, there are probably hundreds of genes that play a role in determining intelligence. Moreover, these same genes also play dozens of roles at once, including roles in immunity, endocrine development, motor function, memory, and cells throughout the body and in every tissue. So are these genes really “intelligence” genes? To think of them that way is merely to expose both our ignorance and our naiveté. These are systems genes; they play dozens (hundreds?) of interacting roles in virtually every part of the body. Much the same can be said for “aging” genes. Short of a few genes that characterize some of the progerias (for example, the lamin-A gene in H-G progeria), there are no aging genes. To look at your gene scan and point to an “aging gene” is exactly like the early phrenologists who looked at your skull and pointed to a “bump of combativeness” or a “bump of sublimity”. There are no such bumps and there are no such “aging genes”. There are certainly genes that play a role (or much more likely, play multiple roles) in the aging process. Unquestionably, there are innumerable genes that increase (or decrease) your risk of age-related diseases or that increase (or decrease) the probable length of your lifespan, but there are no specific “aging genes”, unless you’d like to go to the other extreme and acknowledge that all genes are aging genes, as in some sense, they are.

Misguided approaches to measuring telomeres

About once every two weeks, I receive a research article that goes something like this. The authors measured the telomeres of several dozen volunteers, then performed an intervention (changed the diet, taught them meditation, increased their daily exercise, etc.), then measured the telomeres again in six months, and found that the telomeres had lengthened. They conclude that the intervention lengthens telomeres (and, by implication, reverses aging). While they might be right, the data prove certainly don’t justify their conclusions. If they are right, they are right despite poor design, poor analysis, poor thinking, and a very shaky knowledge of cells. There are several problems these types of study, starting with the fact that almost every one of these studies only measures telomere lengths in white blood cells, which are easy to obtain, but not particularly useful (nor are they valid or reliable, as we’ll see). A typical study of this type is summarized in Figure 1.5a.

The first problem is that even if they truly lengthened the telomeres in those white blood cells (and see below), most of us die of aging cells in our arteries or aging cells in our brains (not to mention the problems we have with our joints, our bones, our kidneys, etc.). Measuring the telomeres in white cells tells us precisely nothing about these more important cells and tissues. It’s much like using hair color (how gray is your hair?) to assess your risk for having a heart attack or Alzheimer’s disease. White cells are the wrong cells to look at. They may be easy to get, but they don’t get you anywhere.

The second problem is that white cells are a dynamic population and they respond to almost any stress by dividing (and shortening their telomeres). Once the stress is gone, the white cells get replaced by “younger” white cells (with longer telomeres) from the stem cells in your bone marrow. So, you might say that if you only measure your white cell telomeres, then you will appear older as a result of any stress and you will appear younger again once the stress goes away. For example, you will appear to have older white cells if you have an infection, if you just had a loved one die, if you lost your job, or if you are malnourished. The opposite is equally true: your white cells will appear younger if your stress resolves, since your white cells will then be replaced with “younger” cells from the stem cell compartment in your bone marrow. Note that if we actually measured your bone marrow cells (and not the circulating white cells), you would find that your hematopoietic stem cells are slowly aging almost regardless of what you do. Whether we cure your infection, improve your diet, make you exercise regularly, or have you meditate, makes little difference to your marrow cells. Almost any clinical intervention might affect your circulating white cells, but there is no evidence that any intervention can make your stem cells younger (or can increase their telomeres). To focus on the white cell telomeres is an illusion. This is not to say that these various interventions aren’t useful and may not improve your health, but there is no evidence that any of these interventions make you any younger. For that matter, there may be evidence that these interventions change the particular white cells you sample (so the new sample has longer telomeres), but there is no evidence that these interventions lengthen telomeres, let alone make you any younger.

To give you an analogy, imagine that you are trying to make people younger in a large country (the US, for example), so you measure the average age in a particular block of a major city (Boston, for example), then you perform an intervention (an urban renewal program, for example) over several decades (between 1950 and 2018, for example), then measure the average age of people living in that same block. The average age may well be lower in 2018 than it was in 1950, but that does NOT mean that you have made anyone get younger and it certainly doesn’t mean that the rest of the country is now younger. The population has changed: some people moved out, some moved in and those that moved in tended to be younger.

The same thing happens when you measure white cell telomeres: the old white cells are gone, and new white cells have “moved into the block”. To conclude that you have made the white cells (let alone the whole body) younger is silly, to say nothing of entirely unsupported by the data. This is not to say that the various interventions purported to affect telomeres and/or aging (meditation, vegetarian diets, exercise, or in one case, living in zero gravity) may not have physical benefits (or that they might actually affect telomeres or aging), but that not a single one of these various interventions has valid data to answer those questions. Measuring peripheral white cell telomere lengths is not only fraught with errors, but (at least as far as most current research goes) has approximately the same validity as casting a horoscope.

Finally, most telomere measurements are done by average length, which is relatively cheap but not particularly relevant. Tissue function is highly dependent upon the oldest (not the average) cells in the tissue and cell function is highly dependent upon the shortest (not the average) telomere in the cells. Measuring the average telomere may be cheap and easy, but it’s like trying to figure out the risk of terrorism in a city by measuring the average person. The average person isn’t a terrorist, but that’s not the point. It’s the extremes that determine the overall risk of terrorism in a community. It only takes a few terrorists to result in disaster and, in your tissues, it only takes a few senescent cells to result in disease. Within the cells, it only takes a few short telomeres to result in a dysfunctional cell. The upshot is that when we measure telomere lengths, the measurement that is most often used is the measurement that doesn’t tell you what you know. The result is that most studies measure the wrong thing and then, with perfect confidence, draw the entirely unwarranted conclusions. No wonder the literature is misleading.

Understanding aging – and understanding cell aging – is replete with pitfalls and misconceptions that are all-too-common, even in the research literature. Leaving these caveats aside for now, however, let’s delve directly into the aging process itself, starting with the cell.

How does a cell age?

 

Next time: Aging and Disease: 2.0 – Cell senescence, Perspective

March 6, 2018

Aging and Disease: 1.4 – Aging, the Overview

How does aging work?

So far, in the prologue (section 0) and the section 1 posts, we have discussed a perspective, what aging isn’t (and is), and what we need to explain in any accurate model of aging. In this post, I provide an overview of how the aging process occurs, from cell division to cell disease, followed by a post on the common misconceptions about this model, which will complete section 1. Section 2 is a series of posts that provide a detailed discussion of cell aging, section 3 explores age-related disease, and section 4 maps out the potential clinical interventions in aging and age-related disease. In this post, however, I provide an outline or map of the entire aging process. This will shoehorn much of what we know about cellular aging and age-relaed disease into a single post, giving you an overview of how aging works.

Cell Division

Aging begins when cells divide. Before moving beyond this, however, we need to ask ourselves why cells divide in the first place. The impetus for cell division is itself a driving force for aging, and the rate and number of cell divisions will control the rate of aging. IF cell division “causes” aging, then what causes cell division? As with any comprehensive examination of causation, we immediately discover that if A causes B, there is always something (often ignored) that must have caused A in turn. In short, causation (and this is equally true of aging) is a cascade of causation that can be pushed back as far as you have to patience to push the question. In the case of cell division, the next upstream “cause” is often environmental and is related to daily living itself. For example, we loose skin cells because we continually slough them off and we therefore need our cells to divide and replace the cells that we lose. As with most tissues, the rate of cell division is strongly modulated by what we do (or what we’re exposed to). If we undergo repeated trauma or environmental stress, then we lose more cells (and consequently have more frequent cell divisions) than we would otherwise. In the knee joint, for example, cell division in the joint surface will be faster in those who undergo repetitive trauma (e.g., basketball players) than in those who engage in low-impact activities (e.g., yoga). In the arteries, cell divisions along the inner arterial surface will be faster in those suffering from hypertension than in those with lower blood pressure (and lower rheological stress). Not all cells divide regularly. While some cells rarely divide in the adult (muscle cells, neurons, etc.), those that do divide regularly – such as skin, endothelial cells in the vascular system, glial cells in the brain, chondrocytes in the joints, osteocytes in the bone, etc. – will vary their rate of division in response to trauma, toxic insults, malnutrition, infections, inflammation, and a host of other largely environmental factors. Putting it simply, in any particular tissue you look at, the rate of cellular aging depends on what you do to that tissue and those cells. Repeated sunburns induce more rapid skin aging, hypertension induces more rapid arterial aging, close head injuries induce more rapid brain aging, and joint impacts induce more rapid joint aging. In all of these cases, the clinical outcome is the acceleration of tissue-specific age-related disease. So while we might accurately say that aging begins when cells divide, we might equally go up one level and say that aging begins in whatever prompts cell division. Any procees that accelerates cell loss, accelerated cell division, and thus accelerates aging and age-related disease.

Telomere Loss

Cell division has limits (as Len Haylfick pointed out in the 1960’s) and tee limits on cell division are, in turn, determined by telomere loss (as Cal Harley and his colleagues pointed out in the 1990’s). Telomeres, the last several thousand base pairs at the end of nuclear chromosomes (as opposed to mitochondrial chromosomes), act as a clock, setting the pace and the limits of cell division. In fact, they determine cell aging. Telomeres are longer in young cells and shorter in old cells. Of course, it’s never quite that simple. Some cells (such as germ cells) actively replace lost telomere length regardless of chronological age, while others (such as neurons and muscle cells) divide rarely and never shorten their telomeres as the adult tissues age. Most of your body’s cells, those that routinely divide, show continued cell division over the decades of your adult life and show a orrelated shortening of their telomeres. Note (as we will in the next blog post) that it is not the absolute telomere length that is the operative variable, but the relative telomere loss that determines cell aging. Nor, in many ways, does even the relative telomere length matter, were it not for what telomeres control “downstream”: gene expression.

Gene Expression

As telomeres shorten, they have a subtle, but pervasive effect upon gene expression throughout the chromosomes and hence upon cell function. In general, we can accurately simplify most of this process as a “turning down” of gene expression. The process is not all-or-nothing, but is a step-by-step, continuum. Gene expression changes gradually, slowly, and by percent. The change is analogous to adjustments in an “volume control” rather the use of an on/off switch. Where once the expression of a particular gene resulted in a vast number of proteins in a given time interval, we now see 99% of that amount are now produced in that time interval. The difference may be one percent, it may be less, but this small deceleration in the rate of gene expression becomes more significant as the telomere shortens over time. Whereas the young cell might produce (and degrade) a pool of proteins using a high rate of molecular “recycling”, this recycling rate slows with continued cell division and telomere shortening, until older cells have a dramatically slower rate of molecular recycling. While you might suspect that a slightly slower rate of turnover wouldn’t make much difference, this is actually the single key concept in aging and age-related disease, both at the cellular and the tissue levels. We might, with accuracy and validity, say that aging is not caused by telomere loss, but that aging is caused by changes in gene expression and, even more accurately, that aging is caused by the slowing of molecular turnover.

Molecular Turnover

To understand molecular turnover is to understand aging. As we will see later in this series (including a mathematical treatment with examples), the predominant effect of slower molecular turnover is to increase the percentage of denatured or ineffective molecules. Examples would include oxidized, cross-linked, or otherwise disordered molecules due to free radicals, spontaneous thermal isomerization, or other disruptive, entropic processes. The cell’s response to such molecular disruption is not to repair damaged molecules, but to replace such molecules with new ones. This replacement process, molecular turnover, is continual and occurs regardless of whether the molecules are damaged or not. The sole exception to the use of replacement rather than repair is that of DNA, which is continuall being repaired. But even the enzymes responsible for DNA repair are themselves being continually replaced and not repaired. There are no stable molecular pools, intracellular or extracellular: all molecular pools are in dynamic equilibrium, undergoing continual turnover, albeit at varying and different rates. Some molecules are replaced rapidly (such as the aerobic enzymes within the mitochondria), others more slowly (such as collagen in the skin), but all molecular pools are in a condition of dynamic equilibrium. More importantly, if we are to understand aging, the rate of molecular turnover slows in every case as cells senesce and the result is a rise in the proportion of damage molecules. To use one example, beta amyloid microaggregates in the brain (in Alzheimer’s disease) occur not simply result because damage accrues over time (entropy). Amyloid microaggregates begin to form when the rate of glial cell turnover of beta amyloid molecules (the binding, internalization, degradation, and replacement of these molecules) becomes slower over time and is no longer keeping pace with the rate of molecular damage (maintenance versus entropy). The result is that beta amyloid molecular damage occurs faster than molecular turnover, and the the histological consequence is the advent of beta amyloid plaques. The same principle – the slowing of molecular turnover with cell aging – applies to DNA repair and the result in an exponential rise in cancer, as we will see in later sections. This general problem of slower molecular turnover applies equally within aging skin, where wrinkles and other facets of skin aging are not the result of entropy, but result from the failure of maintenance (e.g., turnover of collagen and elastin) to keep up with entropy. The incremental and gradual slowing of molecular turnover or molecular recycling is the single most central concept in aging. Aging isn’t caused by damage, but by the failure of maintenance to keep up with that damage. Aging results from insufficient molecular turnover.

Cell and Tissue Dysfunction

The slower molecular turnover and it’s outcome – an increase in dysfunctional molecules – results in a failure within and between cells. Within the cell, we see slower DNA repair, leakier mitocondrial membranes, an increase in the ratio of ROS/ATP production (creating more free radicals and less energy), decreasinly effective free radical scavengers, and a general decrease in the rate of replacement of those molecules that are damage, whether by free radicals or otherwise. For the cell itself, the outcome is a gradual loss of function and an increase in unrepaired DNA. With respect to free radicals, for example, it’s not that free radical damage causes aging, but that cellular aging causes free radical damage. As our cells age (and molecular turnover slows), our mitochondria produce more free radicals (since the aerobic enzyemes aren’t as frequently replace), the mitochondrial membranes leak more free radicals (since the lipid molecules in the mitochondrial aren’t as frequently replaced), free radicals are more common in the cytoplasm (since free radical scavenger molecules are as frequently replaced), and consequent damage becomes more common (since damaged molecules aren’t as frequently replaced). Free radicals do not cause aging: they are merely an important by-product of the aging process. As in cells, so in tissues: just as molecular turnover slows and results in cellular dysfunction, so do do we see dysfunction at higher levels: tissue, structural anatomy, and organ systems. Slowing of molecular turnover expresses itself in dysfunctional cells, an increase in carcinogenesis, and ultimately in clinical disease.

Age-Related Disesase

At the clinical level, the changes in cell and tissue function result in disease and other age-related changes. Wrinkles, for example, may not be a disease, but they result from exactly the same cellular processes outlined above. In each case, however, we see age-related changes or age-related diseases are the result of underlying “upstream” processes that follow a cascade of pathology from cell division, to telomere shortening, to epigenetic changes, to a slowing of molecular turnover, to growing cellular dysfunction. As glial cells “slow down” (in their handling of amyloid, but also in regard to mitochondrial efficiency and a host of other subtle dysfunctions), the result is Alzheimer’s and the other human dementias. As vascular endothelial cells senesce, the result is coronary artery disease, as well as heart attacks, strokes, aneursyms, peripheral vascular disease, and a dozen other age-related diseases and syndromes. As chondrocytes senesce, the result is ostoarthritis. As osteocytes senesce, the result is osteopororis. Nor are these the only manifestations. We see cell senescence in renal podocytes, in dermal and epidermal cells of the skin, in fibroblasts within the lung, and in essentially every tissue that manifests age-related changes. Age related disease and age-related changes are, at the clinical level, the predictable and ultimate outcomes of cellular aging.

The above model is accurate, consistent, and predictively valid, yet there have been a number of crucial misconceptions that have remained common in the literature, making it difficult for many people to grasp the model correctly. Next time, we will explore these errors before moving into the details of aging and disease.

Next: 1.5 – Aging, Misconceptions

 

January 23, 2018

Aging and Disease: 0.1 – A Prologue

Aging and Disease

0.1 – A Prologue

Over the past 20 years, I have published numerous articles, chapters, and books explaining how aging and age-related disease work, as well as the potential for intervention in both aging and age-related disease. The first of these publications was Reversing Human Aging (1996), followed by my articles in JAMA (the Journal of the American Medical Association) in 1997 and 1998. Twenty years ago, it was my fervent hope that these initial forays, the first publications to ever describe not only how the aging process occurs, but the prospects for effective clinical intervention, would trigger interest, growing understanding, and clinical trials to cure age-related disease. Since then, I have published a what is still the only medical textbook on this topic (Cells, Aging, and Human Disease, 2004), as well as a more recently lauded book (The Telomerase Revolution, 2015) that explains aging and disease, as well as how we can intervene in both. While the reality of a clinical intervention has been slow to come to fruition, we now have the tools to accomplish those human trials and finally move into the clinic. In short, we now have the ability to intervene in aging and age-related disease.

Although we now have the tools, understanding has lagged a bit for most people. This knowledge and acceptance have been held back by any number of misconceptions, such as the idea that “telomeres fray and the chromosomes come apart” or that aging is controlled by telomere length (rather than the changes in telomere lengths). Academics have not been immune to these errors. For example, most current academic papers persist in measuring peripheral blood cell telomeres as though such cells were an adequate measure of tissue telomeres or in some way related to the most common age-related diseases. Peripheral telomeres are largely independent of the telomeres in our coronary arteries and in our brains and it is our arteries and our brains that cause most age-related deaths, not our white blood cells. The major problem, howevere, lies in understanding the subtlety of the aging process. Most people, even academics, researchers, and physicians, persist in seeing aging as mere entropy, when the reality is far more elusive and far more complex. Simplistic beliefs, faulty assumptions, and blindly-held premises are the blinders that have kept us powerless for so long.

It is time to tell the whole story.

While my time is not my own – I’d rather begin our upcoming human trials and demonstrate that we can cure Alzhiemer’s disease than merely talk about all of this – I will use this blog for a series of more than 30 mini-lectures that will take us all the way from “chromosomes to nursing homes”. We will start with an overview of aging itself, then focus in upon what actually happens in human cells as they undergo senesceence, then finally move downstream and look at how these senescent changes result in day-to-day human aging and age-relate disease. In so doing, when we discuss cell aging, we will get down into the nitty-gritty of ROS, mitochondria, gene expression, leaky membranes, scavenger molecules, molecular turnover, collagen, beta amyloid, mutations, gene repair, as well as the mathematics of all of this. Similarly, when we discuss human disease, we will get down into the basic pathology of cancer, atherosclerosis, Alzheimer’s, osteoporosis, osteoarthritis, and all “the heart-ache and the thousand natural shocks that flesh is heir to”. We will look at endothelial cells and subendothelial cells, glial cells and neurons, osteoclasts and osteoblasts, fibroblasts and keratinocytes, chondrocytes, and a host of other players whose failure results in what we commonly think of aging.

I hope that you’ll join me as we, slowly, carefully, unravel the mysteries of aging, the complexities of age-related disease, and the prospects for effective intervention.

December 1, 2017

Big Pharma: Still Looking for the Horse

About a century ago, in a small American town, the first automobile chugged to a stop in front of the general store, where a local man stared at the apparition in disbelief, then asked “where’s your horse?” A long explanation followed, involving internal combustion, pistons, gasoline, and driveshafts. The local listened politely but with growing frustration, then broke in on the explanation. “Look”, he said, “I get all that, but what I still want to know is ‘where is your horse?’”

About three hours ago, in a teleconference with a major global pharmaceutical company, I was invited to talk about telomerase therapy and why it might work for Alzheimer’s, since it doesn’t actually lower beta amyloid levels. I explained about senescent gene expression, dynamic protein pools whose recycling rates slow significantly, causing a secondary increase in amyloid plaques, tau tangles, and mitochondrial dysfunction. The pharmaceutical executive listened (not so politely) with growing frustration, then broke in on the explanation. “Look”, she said, “I get all that, but what I still want to know is how does telomerase lower beta amyloid levels?”

In short, she wanted to know where I had hidden the horse.

The global pharmaceutical company that invited me to talk with them had, earlier this year, given up on its experimental Alzheimer’s drug that aimed at lowering beta amyloid levels, since it had no effect on the clinical course. None. They have so far wasted several years and several hundred million dollars chasing after amyloid levels, and now (as judged by our conversation) they still intent on wasting more time and money chasing amyloid levels. We offered them a chance to ignore amyloid levels and simply correct the underlying problem. While not changing the amyloid levels, we can clean up the beta amyloid plaques, as well as the tau tangles, the mitochondrial dysfunction, and all the other biomarkers of Alzheimer’s. More importantly, we can almost certainly improve the clinical course and largely reverse the cognitive decline. In short, we have a new car in town.

As with so many other big pharmaceutical companies, this company is so focused on biomarkers that they can’t focus on what those markers imply in terms of the dynamic pathology and the altered protein turnover that underlies age-related disease, including Alzheimer’s disease. And we wonder why all the drug trials continue to fail. The executive who asked about amyloid levels is intelligent and experienced, but wedded to an outmoded model that has thus far shown no financial reward and – worse yet – no clinical validity. It doesn’t work. Yet this executive met with me as part of a group seeking innovative approaches to treating Alzheimer’s disease.

Their vision is that they are looking for innovation.

The reality is that they are still looking for the horse.

October 10, 2017

Should everyone respond the same to telomerase?

A physician friend asked if a patient’s APOE status (which alleles they carry, for example APOE4, APOE3, or APOE2) would effect how well they should respond to telomerase therapy. Ideally, it may not make much difference, except that the genes you carry (including the APOE genes and the alleles for each type of APOE gene, as well as other genes linked to Alzheimer’s risk) determine how your risk goes up with age. For example, those with APOE4 alleles (especially if both are APOE4) have a modestly higher risk of Alzheimer’s disease (and at a lower age) than those with APOE2 alleles (expecially if both are APOE2).

Since telomerase doesn’t change your genes or the alleles, then while it should reset your risk of dementia to that of a younger person, your risk (partly determined by your genes) would then operate “all over again”, just as it did before. Think of it this way. If it took you 40 years to get dementia and we reset your risk using telomerase, then it might take you 40 years to get dementia again. If it took you 60 years to get dementia and we reset your risk using telomerase, then it might take you 60 years to get dementia again. It wouldn’t remove your risk of dementia, but it should reset your risk to what it was when you were younger. While the exact outcomes are still unknown, it is clear is that telomerase shouldn’t get rid of your risk, but it might be expected to reset that risk to what it was several years (or decades) before you were treated with telomerase. Your cells might act younger, but your genes are still your genes, and your risk is still (again) your risk.

The same could be said for the rate of response to telomerase therapy. How well (and how quickly) a patient should respond to telomerasse therapy should depend on how much damage has already occurred, which (again) is partially determined by your genes (including APOE genes and dozens of others). Compared to a patient with APOE2 alleles (the “good” APOE alleles), we might expect the clinical response for a patient with APOE4 alleles (the “bad” APOE alleles) to have a slightly slower respone to telomerase, a peak clinical effect that was about the same, and the time-to-retreatment to be just a big shorter. The reality should depend on how fast amyloid plaques accumulates (varying from person to person) and how fast we might be able to remove the plaque (again, probably varying from person to person). The vector (slope of the line from normal to onset of dementia) should be slightly steeper for those with two APOE4 alleles than for two APOE3 alleles, which would be slightly steeper than for two APOE2 alleles. Those with unmatched alleles (APOE4/APOE2) should vary depending upon which two alleles they carried.

To give a visual idea of what we might expect, I’ve added an image that shows the theoretical response of three different patients (a, b, and c), each of whom might respond equally well to telomerase therapy, but might then need a second treatment at different times, depending on their genes (APOE and other genes) and their environment (for example, head injuries, infections, diet, etc.). Patient c might need retreatment in a few years, while patient a might not need retreatment for twice as long.

 

July 20, 2016

Curing Disease: More Insight Instead of Mere Effort

 

Curing disease correlates with insight, not blind effort.

There is an eternal trade-off between insight and effort. If we think carefully, understand the problem, and plan, then effort is minimized. If (as too often happens) we think carelessly, misunderstand the problem, and rely on hope instead of planning, then effort is not only maximized, but is usually a complete waste. Lacking insight, we foolishly flush both money and effort down the drain. In the case of clinical trials for Alzheimer’s disease – and in fact, all age-related diseases – this is precisely the case.

The major problem is a naïve complaisance that we already understand aging pathology.

If there was a single concept that is key to all of aging, it is the notion that everything in our organs, in our tissues, and in our cells is dynamically and actively in flux, rather than being a set of organs, tissues, cells, and molecules that statically and passively deteriorate. Aging isn’t just entropy; aging is entropy with insufficient biological response. Senescent cells no longer keep up with entropy, while young cells manage entropy quite handily. At the tissue level, the best example might be bone. We don’t form just bone and then leave it to the mercy of entropy, rather we continually recycle bony tissue throughout our lives – although more-and-more slowly as our osteocytes lose telomere length. This is equally true at the molecular level, for example the collagen and elastin molecules in our skin. We don’t finish forming collagen and elastin in our youth and then leave it to the vagaries of entropy, rather we continually recycle collagen and elastin molecules throughout our lives, although more-and-more slowly as our skin cells lose telomere length. Aging is not a process in which a fixed amount of bone, collagen, or elastin gradually erodes, denatures, or becomes damaged. Rather, aging is a process in which the rate of recycling of bone, collagen, or elastin gradually slows down as our shortening telomeres alter gene expression, slowing the rate of molecular turnover, and allowing damage to get ahead of the game. We don’t age because we are damaged, we age because cells with shortening telomeres no longer keep up with the damage.

The same is true not only of biological aging as a general process, but equally true of every age-related disease specifically. Vascular disease is not a disease in which our arteries are a static tissue that gradually gives way to an erosive entropy, but an active and dynamic set of cells that gradually slow their turnover of critical cellular components, culminating in the failure of endothelial cell function, the increasing pathology of the subendothelial layer, and the clinical outcomes of myocardial infarction, stroke, and a dozen other medical problems. Merely treating cholesterol, blood pressure, and hundreds of other specific pathological findings does nothing to reset the epigenetic changes that lie upstream and that cause those myriad changes. Small wonder that we fail to change the course of arterial disease if our only interventions are merely “stents and statins”.

Nor is Alzheimer’s a disease in which beta amyloid and tau proteins passively accumulate over time as they become denatured, resulting in neuronal death and cognitive failure. Alzheimer’s is a disease in which the turnover – the binding, the uptake, the degradation, and the replacement – of key molecules gradually slows down with telomere shortening, culminating in the failure of both glial cell and neuron function, the accumulation of plaques and tangles, and ending finally in a profound human tragedy. The cause is the change in gene expression, not the more obvious plaques and tangles.

Our lack of insight, even when we exert Herculean efforts – enormous clinical trials, immense amounts of funding, and years of work – is striking for a complete failure of every clinical trial aimed at Alzheimer’s disease. Naively, we target beta amyloid, tau proteins, phosphodiesterase, immune responses, and growth factors, without ever understanding the subtle upstream causes of these obvious downstream effects. Aging, aging diseases, and especially Alzheimer’s disease are not amenable to mere well-intended efforts. Without insight, our funding, our time, and our exertions are useless. Worse yet, that same funding time, and exertion could be used quite effectively, if used intelligently. If our target is to cure the diseases of aging, then we don’t need more effort, but more thought. However well intentioned, however much investment, however many grants, and however many clinical trials, all will be wasted unless we understand the aging process. Aging is not a passive accumulation of damage, but an active process in which damage accumulates because cells change their patterns of gene expression, patterns which can be reset.

Curing Alzheimer’s requires insight and intelligence, not naive hope and wasted effort.

 

 

Older Posts »

Powered by WordPress